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Abstract
The Relation between Defect Interactions, Local Structure and Oxygen Ion Conduc-
tivity in the Bulk of Doped Ceria
For the development of solid oxide fuel cells (SOFC) and high-temperature electrolysis an elec-
trolyte, which has a high oxygen ion conductivity and a low electronic conductivity, is required.
Potential candidates are fluorite-structured oxides such as doped zirconia (ZrO2) and doped ceria
(CeO2). The latter allows a reduction in the operating temperature from 900 °C to 600 °C, and
is, therefore, the main focus of this thesis. The central aim of this thesis is the detailed under-
standing of the relationship between defect interactions, the local structure (microscopic level) and
the macroscopic oxygen ion conductivity in the bulk of fluorite-structured oxides. By combining
ab initio density functional theory with Kinetic Monte Carlo simulations, both the local structure
and the oxygen ion conductivity are predicted as a function of the doping concentration. These
results are verified by accompanying experiments. In this way, a deeper understanding of the
underlying mechanism is obtained in order to make better predictions about material properties.
Therefore, this work provides a contribution to the study of sustainable and efficient energy storages.

Zusammenhang zwischen Defekt-Wechselwirkungen, Lokaler Struktur und Sauerstoff-
ionenleitung in der Bulk Domäne von Dotiertem Ceroxid
Im Rahmen der Entwicklung von Festoxidbrennstoffzellen (SOFC) und der Hochtemperaturelek-
trolyse werden Elektrolyte mit einer hohen Sauerstoffionenleitfähigkeit und geringen elektronischen
Leitfähigkeit benötigt. Potenzielle Kandidaten sind fluoritstrukturierte Oxide wie dotierte Zirko-
niumoxide (ZrO2) und dotierte Ceroxide (CeO2), wobei Letztere eine Verringerung der Betrieb-
stemperatur von 900 °C auf 600 °C ermöglichen und im Mittelpunkt dieser Arbeit stehen. Das
zentrale Ziel der Arbeit ist es, den Zusammenhang zwischen Defektwechselwirkungen und der loka-
len Struktur (mikroskopische Ebene) sowie der makroskopischen Sauerstoffionenleitung in der bulk
Domäne von fluoritstrukturierten Oxiden im Detail zu verstehen. Durch Kombination von ab initio
Dichtefunktionaltheorie-Methoden mit Kinetic Monte Carlo-Simulationen wird sowohl die lokale
Struktur als auch die Sauerstoffionenleitfähigkeit in Abhängigkeit von der Dotierungskonzentration
vorhergesagt. Diese Ergebnisse werden durch begleitende Experimente überprüft. Auf diese Weise
wird ein tieferes Verständnis für zugrunde liegende Mechanismen gewonnen, um bessere Vorher-
sagen über Materialeigenschaften treffen zu können. Diese Arbeit leistet damit einen Beitrag zur
Erforschung einer nachhaltigen und effizienten Energiespeicherung.
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1 Introduction

The increasing use of renewable energy sources highlights the importance of energy conversion and
storage: [1,2] For water, wind and solar power, energy production and demand can occur at different
times, which makes efficient energy storage a central issue in the global energy industry.

Electric energy can be stored mechanically using water pump storages, compressed air reservoirs
and, for small applications, flywheels. [3] Alternatively, energy can be stored electrochemically using
batteries or a combination of water electrolysis and fuel cells. For the latter, water is converted into
hydrogen and oxygen in times of high energy production (water electrolysis). Hydrogen or both
gases can be stocked, for example underground. [4–6] When the energy demand exceeds production,
hydrogen and oxygen are converted back to water in a fuel cell.

Fuel cells separate the oxidation of hydrogen and reduction of oxygen on both sides of an elec-
trolyte, which in most cases only allows either positively charged hydrogen ions or negatively charged
oxygen ions to pass. Examples are Proton Exchange Membrane Fuel Cells (PEMFCs) or Solid Ox-
ide Fuel Cells (SOFCs), respectively. For the latter, other fuels than hydrogen can be used. Proton
conducting fuel cells are operated at up to about 200 °C and oxygen ion conducting fuel cells at high
temperature up to 1000 °C. SOFCs provide high energy conversion efficiency, long-term stability and
excellent fuel flexibility and are therefore a promising candidate for future energy applications. [7]

In a Solid Oxide Fuel Cell (Fig. 1.1), air or pure oxygen is fed to a gas-permeable and electrically
conductive cathode. Oxygen is incorporated into the solid while being reduced. The oxygen ions
move through a dense solid electrolyte to the anode. The anode is also porous and electrically
conductive. A fuel gas is fed and oxidized. If hydrogen is used as a fuel, water is produced. The
electrons, which are released during oxidation, move through an external circuit to the cathode since
the electrolyte has a low electronic conductivity. The electrons transport the electrical energy that
is gained in the chemical reaction. Thus, chemical energy is directly converted into electric energy. [8]

SOFCs can be used for energy conversion in combination with Solid Oxide Electrolyser Cells,
where water is electrolyzed at high temperature. [9] Alternative applications for SOFCs are, for
example, the domestic production of electricity and warm water fed by natural gas pipelines, battery
chargers for cell phones or fuel cell vehicles. [10]

The main component in SOFCs is the dense solid electrolyte, which is permeable for oxygen ions
and impenetrable for electrodes or gas molecules. For more than 150 years, research has been car-
ried out on this topic. Solid electrolytes have been discovered in 1853 (Gaugain) or 1854 (Buff) by
connecting the enhanced conductivity of glasses and ceramics with their electrolytic nature. [11–13]
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Figure 1.1: Configuration of a Solid Oxide Fuel Cell (SOFC).

At the turn of the 20th century, solid electrolytes attracted a lot of attention when Nernst presented
an alternative to the carbon filament lamp. [14] Due to practical reasons, the Nernst lamp could not
compete against tungsten-filament lamps, which were discovered shortly afterwards. However, now
the high oxygen ion conductivity of yttria-stabilized zirconia, (Y2O3)0.15(ZrO2)0.85, at high temper-
ature had been identified. [15] The conduction mechanism in solids was systematically investigated
by Frenkel, Schottky and Wagner between 1926 and 1935 with fundamental works on the disorder
of ionic crystals. [16] The first SOFC with zirconia was presented by Baur in 1937. [17] Not until 1943,
the existence of vacancies in the anion sublattice was realized by Wagner, which are responsible
for the high oxygen ion conductivity. [18] Finally in 1951, Hund confirmed the existence of oxygen
vacancies by X-ray crystallographic and pycnometric measurements. [19]

Besides SOFCs, solid electrolytes with oxygen ion conductivity can be used as oxygen sensors.
An example is the lambda sensor [20] in cars to control the combustion of fuel. Other applications are
oxygen membranes, which feature both ionic and electronic conductivity and can be used to separate
air and oxygen. [21–23] Currently, pure oxygen for industrial and medical applications is produced
by cryogenic distillation, which has a high energy demand. Oxygen membranes can also be used in
power plants for combustion in pure oxygen, which allows the capturing of CO2 for storage. [24]

The most common material for electrolytes, yttria-stabilized zirconia, requires operation tem-
peratures around 900 ◦C, which lead to thermal degradation of materials and chemical reactions
between components. At lower temperatures, the oxygen ion conductivity decreases rapidly. As an
alternative, doped ceria (CeO2) was found, which allowed the reduction of the operating tempera-
ture to intermediate temperatures around 600 ◦C. [25] Pure cerium oxide itself is not a good ionic
conductor. [26] In contrast, doping with lower valent oxides like rare-earth (RE) oxides creates oxygen
vacancies, which results in a significant increase in oxygen ion conductivity. In particular, doping
with samarium oxide (Sm2O3) leads to high conductivities as revealed by impedance spectroscopy
experiments (Fig. 1.2 left). [27]

The ionic conductivity first increases and then decreases with increasing dopant fraction with
a maximum at Ce0.8Sm0.2O1.9. For different dopants (Ce0.8RE0.2O1.9), a correlation between ionic
conductivity and dopant radius was found (Fig. 1.2 right). [27,29–31] Here, often the ionic radii accord-
ing to Shannon are given. [32] Compared to pure ceria, doping can also decrease the ionic conductivity

2
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Figure 1.2: Ionic conductivity of Sm doped ceria at 600 °C (left) [28] and Ce0.8RE0.2O1.9 at 800 °C
(right). [27] Lines are a guide to the eye only.

e.g. by doping with Sc. [33]

The influence of the dopant fraction and the type of dopant on the conductivity has been a
topic of research for half a century. Initially, analytical models were employed. [34–37] For more than
30 years semi-empirical [38–41] and since the turn of the 21st century ab initio calculations have
been performed. [42–45] Despite the development of various models, the detailed understanding of
the underlying mechanism that determines the magnitude of the oxygen ion conductivity and the
optimal dopant concentration is still missing.

In this work, this mechanism is closely investigated by presenting the relation between defect
interactions, local structure and oxygen ion conductivity. Only if all three properties and their
interdependencies are known, the behavior in the bulk of doped ceria can be understood.

The local structure is investigated experimentally using Extended X-Ray Absorption Fine Struc-
ture (EXAFS) and theoretically using Metropolis Monte Carlo (MMC) simulations. The novel direct
comparison of EXAFS coordination numbers based on atomic distances in ceria with simulations
based on ab initio data provides insights into the local structure and its influence on the conductivity.

The diffusion is traced back to microscopic jumps using Kinetic Monte Carlo (KMC) simulations.
The jump rate Γ = ν0·e−

∆Emig
kBT is separated into electronic and vibrational contributions, commonly

known as pre-factor of diffusion and migration energy. Both are investigated using ab initio methods.
The pre-factor of diffusion in pure and doped ceria is studied in unprecedented detail, which allows

a complete ab initio understanding of processes at high temperature compared to standard ab initio
calculations at zero temperature. Migration energies are closely investigated by using models with
high complexity but few and intuitive ab initio parameters, which correlate with material properties.
These models provide a detailed understanding of the underlying mechanism that determines the
influence of different dopants and their concentration on the oxygen ion conductivity.

For comparison, Sm and Lu doped ceria are investigated for their oxygen ion conductivity in
impedance spectroscopy experiments. Here, more compositions are examined than previously shown
in literature. Finally, the degradation of doped ceria due to cation diffusion is, for the first time,
directly compared between experiments and simulations based on ab initio data.
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2 Transport Properties in Pure and
Doped Ceria

2.1 Properties of Ceria

2.1.1 Ceria
Ceria (CeO2) has the fluorite structure (space group 225: Fm3m) for temperatures between room
temperature and melting point. [1,25,31,46] The cations are positioned in a face-centered cubic lattice
while the anions fill the tetrahedral holes leading to a primitive cubic anion lattice (see Fig. 2.1).

Figure 2.1: Crystal structure of cerium oxide. Cerium ions (green) and oxygen ions (red). The unit
cell of the fluorite structure is highlighted.

A fundamental requirement for oxygen ion conductivity is the existence of defects, i.e. interstitial
ions or vacant lattice sites (vacancies). A perfect defect-free crystal exists only at 0 K. For higher
temperatures, the number of ‘intrinsic’ defects increases: In NaCl cations and anions leave their
lattice sites and move to the surface (Schottky disorder), in AgCl cations move to interstitial sites
(Frenkel disorder) and in CaF2 anions move to interstitial sites (Anti-Frenkel disorder). [47–49] In
pure ceria, the anti-Frenkel disorder is favored. [50,51] For low oxygen partial pressures, oxygen va-
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cancies are created by reduction (see Chapter 2.1.3). [50–53] In air, the concentration of defects is
low. Therefore, the ionic conductivity of pure CeO2 is low (10−6 – 10−5 S/cm at 600 °C). [25,26]

Figure 2.2: Migration configurations in ceria. Cerium ions (green), oxygen ions (red spheres) and
oxygen vacancy (red box).

Oxygen vacancies lead to ionic conductivity as oxygen ions can jump to a vacant lattice site
(hopping mechanism). For the oxygen ion conductivity, jumps of oxygen ions or vacancies occur
mainly between adjacent tetrahedral oxygen sites in (100) direction [54] with the experimental jump
distance l = 2.7055 Å given by half of the unit cell length at room temperature. [25] Along the
migration pathway, the migrating oxygen ion passes between two adjacent cations, which form a
migration edge as shown in Fig. 2.2. [55]

Stoichiometric ceria is an insulator with band gap of Egap[O(2p)→Ce(5d)] = 6 eV, [56] in which
unoccupied Ce(4f)-states with Egap[O(2p)→Ce(4f)] = 3 eV [57] can be found. Therefore, the electronic
conductivity is low (10−7 – 10−6 S/cm at 600 °C). [26,58]

2.1.2 Doped Ceria
Defects can also be created by doping and are then called ‘extrinsic’. [59] In this work, cerium oxide
+IV
Ce

-II
O2 is doped with lower valent oxides, mostly rare-earth oxides

+III
RE2

-II
O3. This leads to the creation

of oxygen vacancies as shown in Eq. 2.1 in Kröger-Vink notation. [25] Lower valent dopant atoms are
called acceptors. As dopant fractions in experiments are high (cp. Fig. 2.3), ceria is actually rather
substituted than doped with rare-earth oxides.

RE2O3 −−→ 2 RE
′

Ce + 3 O×O + V••O (2.1)

As a result, oxygen vacancies are the majority defects with a concentration controlled by the dopant
fraction according to

[
RE

′

Ce

]
= 2
[
V••O

]
. In this work, dopant fractions are given as RE1O1.5 mol%,

though in literature also RE2O3 mol% is used (for conversion see appendix, Fig. 9.1). Intrinsic
defects can be neglected and the concentration of oxygen vacancies is independent of temperature.
Even for commercially available ceria with high purity, small amounts of impurities lead to higher
concentration of extrinsic defects than the concentration of intrinsic defects (see Chapter 6.3).

Doping is limited by solubility. While for some dopants solubilities above x = 0.4 were reported, [25]

contradicting information about the solubility limits are found in literature as described in the
following. Often X-Ray Diffraction (XRD) analysis cannot confirm the development of secondary
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2.1 Properties of Ceria

phases, as they are very similar to the fluorite structure of ceria. For the dopants investigated
in this work, most studies report solubilities above x > 0.25 (cp. Fig. 2.3), [60,61] while Balazs
and Glass found for x = 0.2 minor impurity phases for small (Lu, Yb, Tm) and large dopants
(Nd, La) compared to Ce4+. [62] For the even smaller dopant Sc, the solubility limit is already
reached at 3–5%. [25,33] For the large dopant La, the solid solution Ce0.8La0.2O1.9 appears to be only
metastable. [63,64]
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Figure 2.3: Experimental lattice parameter in air at room temperature for Lu, [65–67] Yb, [68] Dy, [69,70]

Tb, [71,72] Gd, [64,73] Eu, [71] Sm, [73,74] Nd [75,76] and La doped ceria. [63,77] Lines are a guide to the
eye only.

The lattice parameter in doped ceria depends on the ionic radius of the dopant. For
Ce0.8RE0.2O1.9, the lattice parameter increases linearly with the dopant radius obeying Veg-
ard’s law. [27,29,62,78] Figure 2.3 shows that the lattice parameter decreases (for small dopants) or
increases (for large dopants) with increasing dopant fraction until a constant value is reached, which
indicates the solubility limit. [63,76] For Yb, Dy and Eu doped ceria, a few derivations from this rule
can be found. Earlier measurements from Brauer and Gradinger showed lower lattice parameters,
which are not shown here. [79] Some studies even assume a relationship between the association of
oxygen vacancies with dopants and the change in behavior of the lattice parameter as a function of
dopant fraction. [61,64,71]

Oxygen ion conductivities of doped ceria are shown in Chapter 2.4. The electronic conductivity of
stoichiometric doped ceria is low. However, in SOFCs, the driving force for the ionic conductivity is
a gradient of the chemical potential (pO2 (anode) < pO2 (cathode)). For low oxygen partial pressures,
ceria can become oxygen-deficient or non-stoichiometric (see next section).
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2 Transport Properties in Pure and Doped Ceria

2.1.3 Non-Stoichiometric Ceria
At low oxygen partial pressure or high temperature, ceria can be easily reduced to CeO2−δ. Here,
cerium ions Ce4+ are reduced to Ce3+ and oxygen vacancies V••O are created: [25,51]

O×O + 2Ce×Ce 

1
2O2 (g) + V••O + 2Ce

′

Ce (2.2)

The formation of oxygen vacancies is compensated by the formation of electrons, which makes non-
stoichiometric ceria an n-type conductor. [80] The additional electron is localized at the host cation
in a distorted local environment and is therefore called polaron. [81–84] Polarons migrate by thermally
activated jumps and therefore are responsible for electronic conductivity. [25,85]

The equilibrium in Eq. 2.2 is influenced by doping with lower valent cations since doping also
creates oxygen vacancies. [25] Therefore, doping decreases the concentration of trivalent cerium ions
Ce
′

Ce. On the other hand, experiments show that doping promotes the reduction of Ce4+-ions at
lower temperatures. [86–92]

If it is assumed that no interactions between defects exist, e.g. for small defect concentrations,
the law of mass action can be applied with unity activity coefficients: Hence, for pure ceria, the
non-stoichiometry δ depends on the oxygen partial pressure according to δ ∝ p−1/6

O2
. In doped ceria

Ce1–xRExO2− x2−δ, the relation δ ∝ p
−1/4
O2

applies. Experimentally, both partial pressure depen-
dencies were detected, respectively, for pure and doped ceria with low non-stoichiometry. [26,91,93]

For large non-stoichiometry (δ > 0.006), significant deviations from the expected partial pressure
dependencies can be observed. [25,82,90,91,94–100] These deviations may indicate interactions between
defects or the ordering of defects.

In addition to the high oxygen ion conductivity in doped ceria, the electronic conductivity must
be low for an ideal electrolyte material. However, the electronic conductivity increase with non-
stoichiometry according to Eq. 2.2.

In the investigated conditions in this work (pO2 = 0.21 atm), the non-stoichiometry is very small.
For example, at 1500 °C, the oxygen partial pressure has to be as low as 10−2 atm to create a
non-stoichiometry of δ ≈ 0.02. [25] Electrolyte materials should possess an electronic conductivity,
which is at least one order of magnitude smaller than the ionic conductivity (ionic domain) for the
entire range of application. This is the case for doped ceria at intermediate temperatures (Fig. 2.4).
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Figure 2.4: Ionic and electronic conductivity of Ce0.8Gd0.2O1.9−δ at 800 °C according to Yokokawa
et al. [101]

2.2 Conductivity and Diffusion
The ionic conductivity σi of the oxygen ions (i = O2−) or vacancies (i = V••O ) is proportional to
their squared charge z2

i e
2, concentration ni and mechanical mobility bi (Eq. 2.3). The mobility is

related to the diffusion coefficient Di by the classical Einstein relation for non-interacting defects
with the Boltzmann constant kB and the absolute temperature T .1 Both diffusion coefficients (DO2−

and DV••O
) depend on the weighted mean jump rate of all oxygen ions (ΓO2−) or vacancies (ΓV••O

)
to one nearest neighbor site.2 In Eq. 2.3 l is the jump distance and γ is the geometrical factor,
which includes the number of jump sites np and the dimension of diffusion d and is γ = np

2d = 1 in a
primitive cubic lattice, e.g. the oxygen sublattice in ceria. [103,104] The jump rate can be described by
an Arrhenius equation (Eq. 2.4) with the activation enthalpy at constant pressure ∆Ha (p,T ). The
activation enthalpy describes the experimentally determined dependence of the diffusion coefficient
on temperature and can be calculated from the slope of a plot ln Γi versus 1/T .

σi = ni·z2
i e

2·bi, where bi = Di

kBT
and Di = γl2·Γi. (2.3)

Γi (p,T ) = νexp,i (p,T ) ·e−
∆Ha(p,T )
kBT (2.4)

Therefore, the pre-exponential factor for diffusion D0,i = γl2·νexp,i (p,T ) depends on the frequency
νexp,i (p,T ). The latter can be interpreted as mean experimental attempt frequency of all oxygen
vacancies or oxygen ions to jump to one nearest neighbor site at constant pressure. It should be noted
that several definitions of the term ‘attempt frequency’ exist, which will be discussed in section 2.3.2.
Naturally, deviations in the activation enthalpy, which appears in the exponential term, possess a
stronger influence on the jump rate than deviations in the attempt frequency.

1For high defect concentrations, an ‘exact Nernst-Einstein’ relation using the chemical
potential can be applied. [102]

2In fact, jumps to other lattice sites may be possible, which are neglected here according to
Nakayama and Martin. [54]
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2 Transport Properties in Pure and Doped Ceria

For doped ceria, the concentration of charge carriers is independent of temperature, while con-
ductivity, mobility, diffusion coefficient and jump rate increase for increasing temperature. [105]In a
restricted temperature range, the activation enthalpy is often assumed to be independent of tem-
perature.

The conductivity of an oxygen ion conductor (Eq. 2.3) can be defined for both oxygen ions and
vacancies whereat both conductivities are equal in value. Likewise, the absolute value of the oxygen
ions charge is equal to the Kröger-Vink charge of the oxygen vacancies. Therefore, the diffusion
coefficients of ions DO2− and vacancies DV••O

differ according to

DO2− =
nV••O

nO2−
DV••O

, (2.5)

with the concentration of oxygen ions nO2− and oxygen vacancies nV••O
(cf. ‘jump balance’). The same

applies to the mean jump rate Γi and the mean attempt frequency νexp,i (p,T ). In a pure ceria crystal
with isolated defects, all oxygen vacancies have the same attempt frequency νexp,V••O

= νexp,V••O
where

νexp,V••O
is the attempt frequency for the jump of one individual oxygen ion to a vacant lattice site.

This is the elementary frequency for a jump process where both the jumping oxygen vacancy and
the jumping oxygen ion have the same jump attempt frequency and which is calculated in this work.
In the transition state theory, attempt frequencies of individual defects are calculated. Since oxygen
ions can only jump when a neighboring vacancy exists, the mean attempt frequency of all oxygen
ions νexp,O2− depends on the fraction of oxygen vacancies (Fig. 2.5). Often it is assumed that the
attempt frequency of an oxygen vacancy νexp,V••O

is not influenced by other vacancies. Therefore, the
attempt frequency and the diffusion coefficient of the oxygen ions increase with increasing oxygen
vacancy fraction according to Eq. 2.5.
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Figure 2.5: Attempt frequency of oxygen ions and vacancies as a function of dopant fraction or
non-stoichiometry for a constant oxygen vacancy attempt frequency according to Eq. 2.5. The
attempt frequency of the oxygen ions increases with increasing oxygen vacancy fraction.

In doped ceria, a variety of ionic configurations occurs, which leads to a variety of jump envi-
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2.3 Transition State Theory

ronments and possibly different local attempt frequencies. As a macroscopic property, the mean
experimental attempt frequency νexp,i (p,T ) is influenced by all local attempt frequencies that affect
the diffusion.

2.3 Transition State Theory

2.3.1 Historical Developments Concerning the Rate Constant
Reaction rate theory was majorly influenced by Arrhenius, [106] Trautz and Lewis, [107,108] Eyring [109]

and Vineyard. [110] The Arrhenius equation [106] (Eq. 2.4), originally formulated in 1889 for the
temperature-dependent rate constant of a chemical reaction, assumes that a minimum amount of
activation energy at constant volume (or enthalpy at constant pressure) is necessary to transform
reactants into products. Thus, the reaction rate is proportional to the product of a pre-exponential
factor and the probability an activated state occurs. While Arrhenius assumed a constant prefac-
tor, about 25 years later, Max Trautz and William Lewis [107,108] proposed a minor temperature
dependence of the pre-exponential factor. According to their collision theory, a reaction occurs if
the kinetic energy along the line-of-centers at contact exceeds a specific value. [111] However, other
degrees of freedom can also contribute to the formation of the activated state, [112] and discrepancies
between theoretical and experimental results were observed.

2.3.2 Transition State Theory according to Eyring
In the year 1935 Eyring [109] published an essential contribution to the transition state theory or
absolute-rate theory. He proposed between initial state (IS) and transition state (TS) a quasi-
equilibrium IS 
 TS. The corresponding equilibrium constant is K = cTS/cIS where cTS and cIS are
the concentrations of the reactants in both respective states. Once the transition state configuration
is reached, every complex decomposes to the product (P) with the decomposition frequency νd,
IS 
 TS νd→ P. Then, the reaction rate for the formation of the product P can be written as

reaction rate = νdcTS = νdK︸︷︷︸
k

cIS. (2.6)

Here k is the reaction rate constant. A transmission factor κ ≤ 1 could be included in Eq. 2.6
to account for ‘return jumps’, though it cannot be evaluated in the frame of the transition state
theory.1 Hence, the classical transition state theory is an upper bound to the true reaction rate. [119]

The equilibrium constant K in Eq. 2.6 can be expressed by the partition functions of the initial
state ZIS and the transition state ZTS. [120] Both of them can be written as a product of an elec-
tronic partition function Zel and a vibrational partition function Zvib assuming no coupling between

1A ‘return jumps’ rate is taken into account by the Kramers approach, [113] and the
short-memory augmented-rate theory (SM-ART) framework of Toller et al. [112,114–118]
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2 Transport Properties in Pure and Doped Ceria

vibrational and electronic excitation (Eq. 2.7). For temperatures far below the Fermi temperature,
the electronic partition function is primarily determined by the electronic ground state. Therefore,
the ratio of the electronic partition functions results in exp

(
−∆E0

el
kBT

)
where ∆E0

el is the electronic
energy difference between the activated complex and the reactants for temperatures far below the
Fermi temperature. This quantity is typically obtained in ab initio calculations at absolute zero.

K = ZTS

ZIS
= ZTS,vib

ZIS,vib

ZTS,el

ZIS,el
= ZTS,vib

ZIS,vib
e−

∆E0
el

kBT (2.7)

Until now, all transition state related properties like the concentrations cTS, the equilibrium con-
stant K, and the vibrational partition function ZTS,vib contained the decomposition vibration.
However, the vibrational mode, which corresponds to the decomposition vibration, has to be ex-
cluded from these properties for the calculation of the free energy. Therefore, the partition function
for the critical vibration can be separated from the vibrational partition function according to
ZTS,vib = kBT

hνd
Z
′

TS,vib.1 Here, Z ′TS,vib is the vibrational partition function for all normal coordinates
except the decomposition vibration, similar to a modified equilibrium constant K ′ = c

′

TS/cIS =
(hνd) / (kBT )K. Therefore, the transition state partition function Z

′

TS,vib has one degree of free-
dom less than the initial state partition function ZIS,vib. The final expression for the reaction rate
constant is

k = kBT

h

Z
′

TS,vib

ZIS,vib
e−

∆E0
el

kBT . (2.8)

Equation 2.8 can be applied to the diffusion process as follows: The migration of an oxygen ion O×O
from a lattice site 2 to a lattice site 1 can be described by the following quasi-chemical reaction:

V••O1 + O×O2 
 V••O1 + O
′′

TS + V••O2 → O×O1 + V••O2. (2.9)

In the initial state (IS), the oxygen ion occupies lattice site 2, while the oxygen vacancy occupies a
neighboring lattice site 1. In the transition state (TS), the oxygen ion is located on the saddle point
between both empty lattice sites 1 and 2. Finally, in the product state P, the oxygen ion occupies
lattice site 1 and the vacancy occupies lattice site 2. The corresponding electronic energy profile is

1The decomposition vibration can be described as classical harmonic oscillator where the
weighted number of states consists of the kinetic and potential energy weighted by the Boltzmann
factor, integrated over phase space and ‘arbitrarily’ divided by the Planck constant. This is similar
to a quantum harmonic oscillator without zero point energy and in high temperature limit
(kBT � hνd). Instead of describing the decomposition motion as a vibration, a translational
degree of freedom can be used. Then, the reaction rate can be defined as product of the
concentration of the transition state cTS, the translational partition function for the particle in an
one-dimensional box Ztranslational =

√
2πmkBT
h δ with the box length δ and the effective mass

associated with the translation along the reaction coordinate m. This modified transition state
concentration is multiplied with the mean velocity given by an one-dimensional
Maxwell-Boltzmann distribution v =

√
kBT
2πm and the inverse box length 1/δ. [112,120–122]
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Figure 2.6: Sketch of the electronic energy profile for an oxygen jump in pure ceria according to
Eq. 2.9.

shown in Fig. 2.6. Comparing Eqs. 2.9 and 2.6 indicates that the jump rate Γ for this elementary
site exchange process corresponds to the reaction rate constant k discussed before.

The partition functions Z ′TS,vib and ZIS,vib in Eq. 2.8 can be described by means of the quantum
harmonic oscillator excluding the decomposition frequency (see next subsection). For a system at
constant volume, both partition functions correlate with the free energy F according to F (V,T ) =
−kBT lnZ (V,T ). Introducing the vibrational free energy difference of initial and transition state,
∆Fvib = Fvib,TS−Fvib,IS, finally the Eyring formula for the jump rate at constant volume (Eq. 2.10)
is obtained.

Γ (V,T ) = kBT

h
e−

∆Fvib(V,T )
kBT︸ ︷︷ ︸

ν0(V,T )

e−
∆E0

el(V )
kBT (2.10)

Similar to the Arrhenius equation (Eq. 2.4), the Eyring formula (Eq. 2.10) is a product of an at-
tempt frequency, here ν0 (V,T ), and an exponential term containing the electronic energy difference,
∆E0

el (V ), whereat the latter is temperature independent. The definition of the attempt frequency
according to Eyring in Eq. 2.10 is commonly used in literature since ν0 (V,T ) is independent of
temperature at high temperatures (see section 6.1) and can be easily used in combination with the
electronic energy difference ∆E0

el which is the standard result for ab initio calculations.
In addition, the total free energy difference between transition state and initial state can be used,

again, with the assumption of no excited electronic states for temperatures far below the Fermi
temperature

∆F = ∆E0
el + ∆Evib − T∆Svib︸ ︷︷ ︸

∆Fvib

, (2.11)

where ∆Evib is the vibrational energy difference and ∆Svib the entropy difference of initial and
transition state. Thus, Eq. 2.10 can be written as

Γ (V,T ) = kBT

h
e−

∆F (V,T )
kBT

= kBT

h
e

∆Svib(V,T )
kB e−

∆Evib(V,T )
kBT︸ ︷︷ ︸

ν0(V,T )

e−
∆E0

el(V )
kBT . (2.12)
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2 Transport Properties in Pure and Doped Ceria

Until now, it was assumed that the volume of the solid is constant during the migration, while
experiments are usually performed at a constant pressure of p = 1 bar. This leads to a change in
volume during the jump of the oxygen ion from the initial to the transition state, which is limited as
atomic displacements in a solid proceed with the speed of sound. [123–125] Nevertheless, the attempt
frequency can be calculated at constant pressure. Similar to Eqs. 2.6 and 2.8 the reaction rate is

reaction rate = νd
kBT

hνd
c
′

TS︸ ︷︷ ︸
cTS

= νd
kBT

hνd
K
′

︸ ︷︷ ︸
k

cIS. (2.13)

Therefore, the activated states with the concentration cTS decompose to the product with the
unknown decomposition frequency νd, while for the modified concentration c′TS the prefactor kBT/h
is e.g. 1.9 ·1013 s−1 at 900 K. Using the change in standard Gibbs free energy between transition and
initial state ∆G = −kBT lnK ′ according to the Van’t Hoff isotherm results in the jump rate: [122,126]

Γ (p,T ) = kBT

h
e−

∆G(p,T )
kBT = kBT

h
e

∆Svib(p,T )
kB︸ ︷︷ ︸

νs(p,T )

e−
∆H(p,T )
kBT , (2.14)

with the Gibbs free energy difference ∆G = ∆H−T∆Svib while assuming no change in the electronic
entropy. Here, all thermodynamic quantities are in standard state i.e. their pure form at 1 bar. Of
course, this derivation can also be used for the constant volume case. The enthalpy of migration at
constant pressure is ∆H = ∆E0

el+∆Evib+p∆V . In this work, the electronic energy difference ∆E0
el,

the attempt frequency ν0 (p,T ), the vibrational energy difference ∆Evib and the migration volume
∆V are calculated for a system at zero pressure (see section 6.1) which is a good approximation for
p = 1 bar. The resulting pressure-volume work of migration p∆V with p = 1 bar is rather small
(about 10−6 eV) and will be neglected here: [119]

Γ (p,T ) = kBT

h
e

∆Svib(p,T )
kB e−

∆Evib(p,T )
kBT︸ ︷︷ ︸

ν0(p,T )

e−
∆E0

el(p)
kBT . (2.15)

While theoretical calculations use the enthalpy of migration ∆H to calculate the jump rate according
to Eq. 2.14, experimental measurements rely on the activation enthalpy ∆Ha (Eq. 2.4). Using the
definition of the activation enthalpy ∆Ha = kBT

2 (∂ ln Γ (p,T ) /∂T ) according to Eq. 2.4 in Eq. 2.14,
the relation between both energies can be formulated by ∆Ha = ∆H + kBT leading to

Γ (p,T ) = kBT

h
e

∆Svib(p,T )
kB e1︸ ︷︷ ︸

νexp,V••O
(p,T )

e−
∆Ha(p,T )
kBT . (2.16)

In theoretical calculations, the attempt frequency ν0 (p,T ) according to the Eyring theory is com-
bined with the electronic energy difference at zero temperature ∆E0

el (p,T ) to calculate the reaction
rate (Eq. 2.15). In experiments, the measured quantities are the experimental attempt frequency
νexp,V••O

(p,T ) and the activation enthalpy ∆Ha (p,T ) (Eq. 2.16). Therefore, both equations cannot
be directly compared, in general. However, for ceria and Sm doped ceria the vibrational energy
∆Evib is calculated in this work to be approximately −kBT at high temperature. This corresponds
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2.3 Transition State Theory

exactly to the value of the missing vibrational degree of freedom of the transition state that consists
of kinetic and potential energy. As a result, calculated attempt frequencies ν0 (p,T ) and experi-
mental attempt frequencies νexp,V••O

(p,T ) can be directly compared. In conductivity and diffusion
experiments, only a macroscopic attempt frequency νexp,V••O

(p,T ) and activation enthalpy can be
extracted. Hence, calculated and experimental attempt frequencies can only be directly compared
according to Eq. 2.4 if all jump environments are equivalent.

The attempt frequency is commonly assumed to be ‘a typical value’ between 1012 s−1 and
1013 s−1. [103,127,128] This is based on the assumption that the vibrational partition functions of
initial and activated state in Eyring’s formula (Eq. 2.8) are similar [119] resulting in the frequency
kBT/h that is 6.2 · 1012 s−1 at room temperature and 1.9 · 1013 s−1 at 900 K.

2.3.3 Transition State Theory according to Vineyard

Vineyard [110] adapted Eyring’s concept to the movement of defects in solids in 1957. Even though
only one atom jumps in the elementary process, the movement of defects is essentially a many-body
process since the migrating defect interacts with neighboring atoms. The absolute rate theory is
in its general form already a many-body process; however, most authors had oversimplified solid
state processes to one-body models or assumed that all surrounding atoms are fixed. Vineyard
avoided these reductions. A hyper-surface is defined, which passes through the transition state and
is orthogonal to contours of equal potential energy separating the initial and the final jump position.
The jump rate is given by the ratio of representative points on one side of the hyper-surface to the
number of points crossing the hyper-surface from just this site. Any representative point of the
system that reaches the hyper-surface with finite velocity will unavoidably cross to the product
site. This corresponds to the transition state in the Eyring theory, which always decomposes to the
product. Using the theory of small vibrations, a high-temperature approximation and a reduction
to the Gamma Point, the attempt frequency can be calculated by the Vineyard formula

ν0 =

N∏
i

νi

N−1∏
j

νj

, (2.17)

where νi and νj are the normal frequencies for vibration in the initial and transition state at
the Gamma point, respectively. Thereby, the product for the initial state features one additional
normal frequency compared to the transition state product. Limitations of the Vineyard theory were
illustrated by Bennett [129,130] and Da Fano et al. [131] A similar solution to the Vineyard method was
formulated by Rice in 1985. [132–134] Further historical developments include various modifications
to account for quantum effects during hydrogen diffusion. [135–138]
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2 Transport Properties in Pure and Doped Ceria

2.3.4 Equivalence of the Eyring and Vineyard Theory
Many authors refer to the equivalence of the Eyring and the Vineyard method in the harmonic ap-
proximation at high temperature in case only phonons at the Gamma point are considered in both
methods. [103,139,140] Indeed many groups calculate phonon modes for the Gamma point only [141–143]

unless thermodynamic properties derived from the phonon dispersion on the whole reciprocal lattice
grid are of special interest. [141,142,144–147] According to this, the vibrational free energy is some-
times calculated for several phonon wave vectors q (q-point mesh), [103,148–151] extending the Eyring
method to the full Brillouin zone. In fact, also the Vineyard method can be applied to a phonon
mesh with several wave vectors, but this possibility is only mentioned by Fedorov and Sadreev. [152]

To the authors knowledge, there is no example in literature in which the equivalence of the Eyring
and the Vineyard method is shown without restriction to the Gamma point. For this reason, this
derivation will be described in the following.

The canonical partition function for M discrete wave vectors with the index q is defined as

Zvib =
M∏
q

(
N∏
i

∑
n

e−
Eq,i,n
kBT

) 1
M

, (2.18)

where theN phonon bands, equivalent to the degrees of freedom, have the index i and the microstates
have the index n.1 For the vibrational partition function, the harmonic approximation and therewith
the energy eigenvalues Eq,i,n = hνq,i(1/2+n) of the quantum harmonic oscillator with its frequency
νq,i can be used (see also Maradudin [153] and Wimmer et al. [140]). The vibrational energy Fvib can
be calculated from the partition function Fvib = −kBT lnZvib resulting in

Fvib =
∑
q,i

{
hνq,i
2M + kBT

M
ln
[
1− exp

(
−hνq,i
kBT

)]}

= kBT

M

∑
q,i

ln
(

2 sinh hνq,i
2kBT

)
. (2.19)

Here
∑
q,i hνq,i/2M is independent of temperature and can be regarded as zero point energy cor-

rection to the energy barrier ∆E0
el. The attempt frequency can be calculated corresponding to the

Eyring theory (Eq. 2.10):

ν0 = kBT

h

M∏
q

N∏
i

(
2 sinh hνq,i

2kBT

) 1
M

M∏
m

N−1∏
j

(
2 sinh hνm,j

2kBT

) 1
M

≈ kBT

h

M∏
q

N∏
i

(
1− e−

hνq,i
kBT

) 1
M

M∏
m

N−1∏
j

(
1− e−

hνm,j
kBT

) 1
M

. (2.20)

1The partition function is calculated as geometric mean for all discrete wave vectors, just as
the arithmetic mean of all wave vectors would be used for the phonon density of states to satisfy
its normalization condition.
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2.3 Transition State Theory

The indices i (phonon band) and q (wave vector) for the initial state correspond to the indices j
and m for the transition state. The transition state has one degree of freedom less than the initial
state. For the last part in Eq. 2.20, which is given for comparison with literature, it is assumed that
the difference in zero point energy can be neglected, which might be valid at high temperature. [154]

As a further approach that is often performed in literature, the Taylor expansion of the hyperbolic
sine can be simplified for high temperatures (see Eq. 2.21) to sinh x ≈ x. Equation 2.21 is often
referred to as the classical limit [155] of the vibrational free energy of the ‘quantum mechanical’
vibrational free energy in Eq. 2.19.

Fvib = kBT

M

∑
q,i

ln
(
hνq,i
kBT

)
(2.21)

Inserting Eq. 2.21 in the Eyring formula (Eq. 2.10) leads to

ν0 =

M∏
q

N∏
i

νq,i
1
M

M∏
m

N−1∏
j

νm,j
1
M

. (2.22)

The resulting attempt frequency (Eq. 2.22) allows the general use of the classical Vineyard method
for high temperatures and any phonon mesh. If only the Gamma point is considered (M = 1), the
classical Vineyard formula (Eq. 2.17) is obtained.
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2 Transport Properties in Pure and Doped Ceria

2.4 Conductivity in Doped Ceria
In this chapter, ionic conductivities or precisely oxygen ion conductivities of doped ceria according
to experiments are presented. Interpretations of these conductivities according to literature are
summarized in Chapter 2.5.

Direct current (DC) measurements show the total conductivity of a polycrystalline sample.
Impedance spectroscopy (AC) measurements allow the separation of the resistivity in the grains
(grain interior, bulk) and the resistivity in the grain boundaries, which are both inverse (cp. Chap-
ter 4.1.5) to the macroscopic conductivity.

2.4.1 The Total Conductivity

Sm Doped Ceria

Sm doped ceria has one of the highest conductivities reported for a ternary cerium oxide. The total
conductivity of polycrystalline Sm doped ceria at 600 °C is shown in Fig. 2.7 as a function of dopant
fraction x in Ce1–xSmxO2−x/2. The curve progression and its interpretation is the main objective
of this work.
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 H u a n g  e t  a l .  ( C h e m .  M a t e r . )
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 Z h a  e t  a l .
 F u  e t  a l .

Figure 2.7: Total ionic conductivity of polycrystalline Sm doped ceria at 600 °C. [28,73,156–158] Lines
are a guide to the eye only.

The conductivity first increases and then decreases with increasing dopant fraction. The dopant
fraction leading to the maximum in conductivity is referred to as xmax. A summary of all xmax is
shown in Table 2.1. Each research group found for the entire investigated temperature range the
same xmax.
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2.4 Conductivity in Doped Ceria

reference xmax temperature

Yu et al. [159] 0.12 230 – 900 °C
Zha et al. [73] 0.15 400 – 850 °C
Huang et al. (Chem. Mater.) [160] 0.17a 200 – 600 °C
Eguchi [28] 0.2 500 – 900 °C
Huang et al. (Solid State Ionics) [156] 0.2–0.3 200 – 640 °C
Peng et al. [158] 0.2 600 °C
Fu et al. [157] 0.2 500 – 800 °C

Table 2.1: Dopant fractions that lead to the highest total ionic conductivity for polycrystalline
Ce1−xmaxSmxmaxO2−xmax/2 samples in the measured temperature range.

aThe grain size is comparably small with 100 – 500 nm.

At high dopant fractions, few measurements show again an increase in conductivity with increas-
ing dopant fraction (Fig. 2.7). Both the measurements from Huang et al. [156] and Peng et al. [158]

show an increase in total conductivity from x = 0.25 to x = 0.3. For the measurements of Huang et
al., [156] this is even the global maximal conductivity.

The conductivities measured by different groups scatter for about one order of magnitude. Reasons
for that are investigated in this work in Chapter 8.1 and a strong influence of the synthesis on the
conductivity is found.

Other Rare-Earth Dopants

Different trivalent rare-earth dopants lead to different conductivities. Often, only a single dopant
fraction is investigated for comparison. This dopant fraction may be different from the dopant
fraction leading to the maximum in conductivity and xmax may vary between different dopants.
Therefore, the investigation of a single dopant fraction gives only a hint to the optimal dopant
leading to the highest conductivity.

Figure 2.8 shows the total ionic conductivity of Ce1–xRExO2−x/2 according to Balazs and
Glass, [62] Yahiro et al. [29,161] and Eguchi et al. [27] (x = 0.2) and Kudo and Obayashi (x = 0.3) [162]

using the ionic radii of RE3+ according to Shannon. [32] The work of Yahiro et al. was slightly
modified by the same group later, especially the conductivity of Gd doped ceria. Eguchi et al.
found similar results. Balazs and Glass found smaller conductivities for the same compositions. As
expected, higher temperatures lead to higher conductivities.

For x = 0.2, doping with Sm leads to the highest total ionic conductivity. For dopants with higher
or lower ionic radii, the total ionic conductivity is lower. Especially the results of Yahiro et al. and
Eguchi et al. suggest a linear relationship between ionic radius and total conductivity. A fit for the
linear relationship is shown with the red and blue line, for Balazs and Glass arbitrary values were
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Figure 2.8: Total ionic conductivity of Ce1–xRExO2−x/2 for x = 0.2, [27,29,62,161] and 0.3. [162] The
lines show a possible linear relationship between the ionic radius and the conductivity (solid
lines) or the logarithm of the conductivity (dashed lines).

chosen. For comparison, the dashed lines in Fig. 2.8 show a linear relationship between the ionic
radius and the logarithm of the total conductivity. The relation between different conductivities as
a function of dopant is similar at 400 °C and 800 °C.

For x = 0.3, the order of precedence for ‘best’ dopant changes and is temperature dependent. At
400 °C, Eu and Gd lead to large ionic conductivities while the conductivity of Sm doped ceria is
low. At 800 °C, Nd, Sm, Eu and Gd lead to large ionic conductivities.

2.4.2 The Bulk Conductivity

For polycrystalline samples, the total conductivity is influenced by the bulk and grain boundary
domain. In the bulk domain, oxygen ions jump through the regular lattice. In the grain boundary
domain, jumps take place along or across dislocations and in space charge zones. The separation
of both domains is possible using e.g. impedance spectroscopy measurements and will be discussed
in Chapter 4.1.5. Influences on the grain boundary domain will be discussed in Chapter 8.1. In the
present work, the bulk domain is of particular interest as it represents the inherent property of the
doped material largely without influences of the microstructure of the sample. Therefore, the bulk
conductivity is measured and simulated in this work.

Figure 2.9 shows the influences of bulk and grain boundary conductivity on the total conductivity
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Figure 2.9: Bulk, grain boundary and total ionic conductivity of Gd doped ceria at 500 °C according
to Steele. [86] Lines are a guide to the eye only.

of Gd doped ceria at 500 °C. The curve progressions are significantly different. For small dopant
fractions, the total conductivity is limited by the low grain boundary conductivity, which is discussed
further in Chapter 4.1.5. For large dopant fractions, the conductivity is limited by the low bulk
conductivity. Compared to the total domain, xmax is small for the bulk conductivity.
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Figure 2.10: Bulk ionic conductivity of doped ceria at 30 °C (left) and 250 °C (right) according to
an Arrhenius fit of the data of Faber et al. for measurements between 30 °C and 330 °C. [163]

Lines are a guide to the eye only.

The bulk conductivity depends significantly on the type of dopant and the investigated temper-
ature. Figure 2.10 shows the bulk ionic conductivity of Yb, Y, Gd, Nd and La doped ceria at 30 °C
and 250 °C according to Faber et al. [163]

For small dopant fractions, Nd doped ceria possess the highest bulk conductivities with a max-
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imum at xmax = 0.03. For large dopant fractions, Gd doped ceria possess the highest bulk con-
ductivities with a maximum at xmax = 0.06–0.18. The dopant fraction leading to the maximum
in conductivity decreases with increasing dopant radius, with the exception of Gd doped ceria at
250 °C. This behavior is further investigated in the next section. The relation between conductivities
of different dopants is similar at 30 °C and 250 °C. Nowick et al. [164] showed for Y doped ceria at
181 °C similar conductivities as the Arrhenius fit of the data of Faber et al.
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Figure 2.11: Bulk ionic conductivity at 500 °C for Lu, [165,166] Yb, [166] Er, [166] Y, [163,166–172] Dy, [166]

Tb, [71] Gd, [64,86,166,169–177] Eu, [71,178] Sm, [74,166,169–172,179–181] Nd [75,76,166,170,182,183] and La
doped ceria. [169] Forth order polynomials were fitted to the data with exception of the data
of Zajac and Molenda (in parentheses), which was disregarded due to its strong deviation com-
pared to other literature data, as a guide to the eye only to show the general trend of the data
(dashed lines).

For 500 °C, a summary of several experiments is shown in Fig. 2.11. A strong scattering between
different experiments is found. The dopant fractions leading to the maximum in conductivity differ
significantly and will be investigated in the next section.

Nevertheless, a general increase and decrease in conductivity with increasing dopant radius with
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a maximum around Gd and Sm doped ceria is found. For example, Mogensen et al. [184] found
decreasing conductivities at 1000 °C in the series Gd, Y, La and Sc doped ceria (x = 0.1). Omar
et al. [166] investigated Lu, Yb, Er, Y, Dy, Gd, Sm, Nd doped ceria (x = 0.1) and found between
400–600 °C an increasing conductivity with increasing dopant radius, which is in disagreement with
the other studies. Zajac [170] studied Y, Gd, Sm and Nd doped ceria (x = 0.15) at 700 °C where Gd
doped ceria has the largest conductivity. Pérez-Coll et al. [169] investigated Y, Gd, Sm and La doped
ceria (x = 0.2) and found between 200–700 °C the largest conductivity for Sm doped ceria.

It is surprising that only a few dopant fractions of Sm doped ceria were examined despite its high
conductivity. Polycrystalline samples were analyzed for x = 0.1, 0.2 and 0.3, [74,166,169,171,172,180,181]

or 0.15, [170] while Sanghavi et al. [179] investigated single crystal thin films for few different dopants
fractions. For a complete picture, Sm doped ceria was investigated in this work and results will be
presented in Chapter 8.2.2.
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Figure 2.12: Bulk ionic conductivity at 400 °C of Ce1–xRExO2−x/2 for
x = 0.1, [64,69,75,76,165,166,168,174,177,178,182,183,185] and 0.2. [64,69,75,76,168,169,182,183] The lines
show a possible linear relationship between the ionic radius and the conductivity (solid lines) or
the logarithm of the conductivity (dashed lines).

Again, the conductivity for a single dopant fraction can be investigated. In Fig. 2.12, the bulk
conductivity at 400 °C for x = 0.1 and 0.2 is extracted. For x = 0.2, doping with Sm leads to the
highest bulk ionic conductivity as seen before for the total conductivity. For x = 0.1 the conductivity
of Gd, Eu, Sm and Nd doped ceria is similar as seen before for the total conductivity at x = 0.3.
A linear relationship between ionic radius and bulk conductivity cannot clearly be verified due to
strong scattering, especially for Nd doped ceria. A fit of the linear relationship is shown with the
red line; the linear relationship shown by the blue line is a guide to the eye only. For comparison,
the dashed lines show a linear relationship between the ionic radius and the logarithm of the bulk
conductivity.
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2.4.3 Dopant Fraction with the Highest Conductivity
The dopant fraction leading to the maximum in conductivity depends on the type of dopant and
the measured temperature range and varies between different research groups. In this chapter, an
overview of xmax for the total and bulk conductivity is given.

The Total Conductivity

For the total conductivity, the dopant fraction leading to the maximum in conductivity is shown
in Table 2.2 and Fig. 2.13a. The nearest measured dopant fractions, compared to xmax, with lower
conductivity are shown in Fig. 2.13a using error bars.

dopant xmax temperature reference

Yb 0.15 500 °C Ou et al. [186]

Y

0.10 300 – 500 °C
Van herle et al. [187]0.20 600 – 900 °C

0.25 1000 °C
0.16 400 – 800 °C Balazs et al. [62,188]

Dy
0.1 200 – 900 °C Sánchez-Bautista et al. [69]

0.2 400 – 600 °C Acharya et al. [189]

Gd

0.20 430 – 870 °C
Kudo and Obayashi [190]

0.30 870 – 980 °C
0.12 160 – 710 °C

Hohnke [36]
0.20 710 – 1400 °C
0.26 500 °C Steele [86]

0.15 300 – 400 °C
Tianshu et al. [64]

0.20 400 – 800 °C
0.15 400 – 850 °C Zha et al. [73]

Sm 0.12–0.2 see Table 2.1

Nd 0.15 250 – 800 °C Zhu et al. [183]

La
0.1 500 °C

Zheng et al. [77]
0.15 600 – 800 °C
0.15 300 – 600 °C Dikmen et al. [63]

Table 2.2: Dopant fractions that lead to the highest total ionic conductivity for
Ce1−xmaxRExmaxO2−xmax/2 samples in the measured temperature range.

For the total conductivity, xmax is found between 0.1 and 0.3. The distribution of xmax is very
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broad especially for medium ionic radii, which lead to the highest conductivities. Measurements at
low temperature lead rather to low xmax, while measurements at high temperature lead rather to
high xmax. This is shown in Fig. 2.13a using a blue and a red line. The reason for the temperature
dependence is the increase in activation enthalpy with increasing dopant fraction, which is shown
in the next section. For all dopants, at least one reference is found with a dopant fraction leading to
the maximum in conductivity of xmax = 0.15. The lowest xmax is found for the total conductivity
at 0.1.

For Pr [191,192] and Dy doped ceria, [72] impedance measurements show an increase in conductivity
with increasing dopant content for low and intermediate temperatures. This is caused by a decrease
in ionic transference number and, therefore, an increase in electronic contribution with increasing
dopant fraction.
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Figure 2.13: Dopant fractions that lead to the highest ionic conductivity for
Ce1−xmaxRExmaxO2−xmax/2 samples in the measured temperature range. Errors bars indi-
cate the nearest measured dopant fraction with lower conductivity. xmax for low and high
temperature measurements are marked (lines).

The Bulk Conductivity

For the bulk conductivity, the dopant fraction leading to the maximum in conductivity is found
between xmax = 0.02 and 0.38 (Table 2.3 and Fig. 2.13b). The distribution of xmax is even broader
compared to the total conductivity especially again for medium ionic radii, which lead to the highest
conductivities. Similar to the total conductivity, the measured temperature range and xmax correlate.
Measurements at low temperature lead rather to low xmax, while measurements at high temperature
lead rather to high xmax (Fig. 2.13b). For all dopants, at least one reference is found with a dopant
fraction leading to the maximum in conductivity of about xmax = 0.1, which is the lowest xmax
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found for the total conductivity. Generally, xmax for the bulk domain is smaller than for the total
domain as already expected from Fig. 2.9.

dopant xmax temperature reference

Yb 0.08 30 – 330 °C Faber et al. [163]

Y

0.08 181 °C Nowick et al. [164]

0.08 80 – 200 °C Wang et al. [167]

0.08 80 – 330 °C Faber et al. [163]

0.08 500 – 700 °C Tian and Chan [193,194]

Gd

0.06 30 °C
Faber et al. [163]0.10 80 °C

0.18 130 – 330 °C
0.10 500 °C Steele [86]

0.10 350 – 450 °C
Tianshu et al. [64]

0.20 450 – 500 °C

Eu 0.38 400 – 600 °C Li et al. [71]

Sm
0.1 250 – 550 °C Zhan et al. [74]

0.15 500 – 700 °C Sanghavi et al. [179]

Nd

0.10 300 – 500 °C
Zhu et al. [183]

0.20 500 – 800 °C
0.03 30 – 280 °C

Faber et al. [163]
0.10 330 °C

La
0.02 30 – 170 °C

Faber et al. [163]
0.10 170 – 330 °C

Table 2.3: Dopant fractions that lead to the highest bulk ionic conductivity for
Ce1−xmaxRExmaxO2−xmax/2 samples in the measured temperature range.

2.4.4 The Activation Enthalpy of the Bulk Domain
The temperature dependent behavior of the conductivity in doped ceria can be shown in an Arrhe-
nius plot (Fig. 2.14 left) according to Eqs. 2.3 and 2.4. While most literature sources show a linear
relationship between ln(σT ) and 1/T and determine an activation enthalpy ∆Ha, several groups find
a distinct temperature dependence for low and high temperature. Then, the resulting ∆Ha is high
for the low temperature region and low for the high temperature region. This leads to a kink in the
Arrhenius plot around 350–600 °C. [74,166,168,169,174,181,182,195] However, the difference in activation
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2.4 Conductivity in Doped Ceria

enthalpy between low and high temperature region, which is referred to as experimental RE-V asso-
ciation enthalpy or association energy for an

(
RE

′

CeV••O
)•

associate, varies. While Omar et al. find
association energies between only 0.02-0.05 eV for different dopants, [166] Gerhardt-Anderson and
Nowick determine the association energy for Sc doped ceria to be 0.67 eV. [33] The (experimental)
association energies are shown in Fig. 2.14 (right). From x = 0.001 to 0.02 a decrease in association
energy for Y doped ceria was found. [167] The same is true for Nd doped ceria from x = 0.01 to
0.03. [182] From x = 0.03 to 0.4 an increase in association energy for Y, Gd, Sm and Nd doped
ceria was found. [74,168,182] Stephens and Kilner use the lowest migration energy of different dopant
fractions as a reference to calculate the association energy.
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Figure 2.14: Arrhenius behavior of the ionic conductivity in Ce1–xSmxO2–x/2 according to Zhan et
al. (left). [74] Association energies according to literature (right). [33,39,74,166–169,174,181,182,185,195]

For the latter, Lines are a guide to the eye only.

The activation enthalpy for rare-earth doped ceria is shown in Fig. 2.15 from measurements
between room temperature and 330 °C and in Fig. 2.16 from measurements up to 1000 °C. Both
temperature ranges show a similar behavior. Activation enthalpies scatter significantly, e.g. between
0.63 eV and 0.82 eV for Ce0.9Gd0.1O1.95 and between 0.80 eV and 0.94 eV for Ce0.8Gd0.2O1.9. For Sm
and Nd doped ceria, activation enthalpies scatter between 0.46 eV and 0.72 eV for Ce0.9Sm0.1O1.95

and between 0.65 eV and 0.82 eV for Ce0.9Nd0.1O1.95.
In general, activation enthalpies first decrease and then increase as a function of dopant fraction,

similar to other fluorite-structured oxides. [36] For example, a decreases between x = 0.001–0.02 was
found for Y or Nd doped ceria. [167,182] An increases between x = 0.03–0.4 was found for Sm, Y, Gd
or Nd doped ceria. [74,168,182]

The dopant fraction leading to a minimum in activation enthalpy is large for small dopants and
small for large dopants. For example, Faber et al. [163] found minima in the activation enthalpy at
x = 0.02–0.04 (for Nd), 0.08 (Yb), 0.04 (Y), 0.06 (Gd) and 0.02 (La).

At a single dopant fraction, the activation enthalpy decreases for an increasing dopant radius
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Figure 2.15: Activation enthalpy for the bulk ionic conductivity of doped ceria between room tem-
perature and 330 °C according to Faber et al. [163] Lines are a guide to the eye only.
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Figure 2.16: Activation enthalpy for the bulk ionic conductivity of doped ceria for various tempera-
ture ranges between room temperature and 1000 °C for Lu, [165,166] Yb, [166] Er, [166] Y, [166–170,180]

Dy, [69,166] Gd, [64,166,168–170,173,174,176] Eu, [178] Sm, [74,166,170,180,195] Nd [76,166,170,182,183] and La
doped ceria. [169]
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2.4 Conductivity in Doped Ceria

up to about Gd, Eu, Sm, Nd and increases afterwards. For example, Faber et al. [163] investigated
Yb, Y, Gd, Nd and La doped ceria where Nd doped ceria has the lowest activation enthalpy. Omar
et al. [166] investigated Lu, Yb, Er, Y, Dy, Gd, Sm, Nd doped ceria (x = 0.1) and found for Sm
doped ceria the lowest ∆Ha, similar to Zajac [170] who investigated Y, Gd, Sm and Nd doped ceria
(x = 0.15). Pérez-Coll et al. [169] investigated Y, Gd, Sm and La doped ceria (x = 0.2) and also
found the lowest ∆Ha for Sm doped ceria.

Activation Enthalpy and Ionic Conductivity

The analysis of the ionic conductivity in Chapter 2.4.2 and 2.4.3 and the activation enthalpy in
Chapter 2.4.4 suggests that the curve progression of the activation enthalpy is inverted to the curve
progression of the ionic conductivity. This was especially investigated by Wang et al., [164,167] who
showed for Y doped ceria that the maximum of the conductivity at 182 °C for different dopant
fractions occurs at similar compositions as the minimum in activation enthalpy. The same applies to
the data of Faber et al. (Fig. 2.15) [163] with the best dopants Gd and Nd and to the data of Pérez-Coll
et al. [169] with the best dopant Sm. Mori et al. reported as well that the activation enthalpy mirrors
the maximum in the conductivity for several dopant fractions in Gd doped ceria. [196] Deviations
from this trend are shown by Omar et al. [166] and Zajac, [170] which might be influenced by sample
preparation.
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2 Transport Properties in Pure and Doped Ceria

2.5 The Influence of Doping
In this chapter, interpretations of the oxygen ion conductivities of doped ceria according to literature
are summarized. Therefore, only the bulk domain (Fig. 2.9) is discussed as it represents the inherent
property of the doped material largely without influences of the microstructure of the sample.

Ionic conductivities (Chapter 2.4.2), xmax (Chapter 2.4.3) and activation enthalpies (Chap-
ter 2.4.4) are discussed. The influence of the dopant fraction and the influence of the type of dopant
on the conductivity are analyzed.

2.5.1 Varying the Dopant Fraction
The oxygen ion conductivity increases steeply with increasing dopant fraction of the trivalent rare-
earth dopant to a maximum at about xmax = 0.08–0.2 and then decreases gently similar to doped
ZrO2. [197]

The initial rise in oxygen ion conductivity with increasing dopant fraction is caused by the creation
of oxygen vacancies according to Eq. 2.1. [34] If no further interactions existed, the ionic conductivity
would increase to a maximum until half of the oxygen sublattice is unoccupied. [198] In experiments,
the maximum in conductivity appears at significantly lower dopant fractions. According to liter-
ature, the position of the maximum clearly depends on the number of oxygen vacancies,1 which
are created per dopant, as in Ca2+ or Sr2+ doped ceria the maximum appears at lower dopant
fractions. [25,199–202] Reasons given for the decrease in conductivity are the association between oxy-
gen vacancies and dopants, the ordering of oxygen vacancies or a modified jump probability of the
oxygen vacancies.

In literature, it is commonly assumed that the maximum in oxygen ion conductivity is caused by
the association between oxygen vacancies and dopants. The association originates from the opposite
charge of both defects and local relaxation of the crystal lattice. The migration energies for jumps
away from the associating dopant are higher than in pure ceria, while jumps to the dopant are
even more favored. These jump configurations are shown in Fig. 2.17, where the inequality symbols
indicate the relation of the corresponding migration energies. In simple terms it is often described
that the oxygen vacancies are trapped by the almost immobile dopants, and the concentration of
the free vacancies is reduced.2 Several experiments and calculations support this thesis:

It is assumed that the high-temperature and low-temperature regimes differ in activation enthalpy
by the association energy between the migrating oxygen vacancy and the dopant (Chapter 2.4.4).
While at low temperature vacancies are trapped or even immobile, at high temperature sufficient
energy is available to free the vacancies, which leads to a decrease in activation enthalpy. [33,74,167]

1However, for e.g. Ca2+ doped ceria the association energy and the jump barriers around Ca2+

differ significantly compared to most rare-earth dopants, which is rarely discussed in literature.
2This picture is an oversimplification as vacancies are not trapped for an infinitely long

duration.
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Figure 2.17: The migration energy increases if the oxygen ion jump decreases the association.

However, activation enthalpies at high temperature still depend on the dopant fraction [74,182] and
type of dopant. [166] This indicates that the assumption is restricted to dilute solutions as shown in
literature. [167,203]

Semi-empirical [39,40] and ab initio [44,45] calculations confirm the association energies found by
impedance measurements. Schmalzried used electrostatic interactions, which lead to different prob-
abilities for forward and backward jumps, to describe a relationship between increasing activation
energies with increasing dopant fraction. [35] Neutron diffraction experiments of yttria-stabilized
zirconia (YSZ) show not only sharp Bragg reflections but also a background that is modulated
with the scattering vector. This diffuse scattering indicates the presence of not completely ordered
atoms such as oxygen ions, which are moved towards the vacancies, or possibly associates. [204]

Electron spin resonance spectroscopy suggests that charged defect complexes of dopants and an
oxygen vacancy

(
RE

′

CeV••O
)•

exist at low dopant fractions. [205] Extended X-Ray Absorption Fine
Structure (EXAFS) measurements of the coordination numbers of cations and anions confirm the
formation of associates. [206–209] Finally, Nuclear Magnetic Resonance (NMR) measurements sup-
port the formation of associates for 45Sc doped ceria, [210] 89Y doped ceria, [210–212] and 139La doped
ceria. [213]

While the formation of associates is commonly accepted, the dopant fraction at which associates
appear and influence the conductivity is a topic of discussion. Early approaches assumed that discrete
localized clusters separate from the ideal cerium lattice are present, and that their concentration
can be described using equilibrium thermodynamics. [33] However, this model failed at larger dopant
fractions. [167]

Besides association, research groups presume the formation of defect cluster [30,174] or nano-scale
domains: Especially at high dopant fractions, Tien and Subbarao, [214] Nakamura, [215,216] Ou et
al. [186,217] and Hooper et al. [218,218] reported an ordering of the oxygen vacancies leading to reduction
of the oxygen ion conductivity.

While the association and ordering of defects can be investigated experimentally, the influence of
both phenomena on the oxygen ion migration can only be speculated on. Thus, many investigations
show that attractive and repulsive interactions are not sufficient to describe the experimental results
without considering modified jump probabilities or migration energies.

Murray and Murch calculated the oxygen ion conductivity using Kinetic Monte Carlo (KMC)
simulation and explained the maximum in conductivity as a function of dopant fraction. [41] For this
purpose, they used migration energies for oxygen ion jumps depending on the local environment,
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2 Transport Properties in Pure and Doped Ceria

which were calculated using empirical potentials. Here, for high dopant fractions, oxygen vacancies
jump mostly in the vicinity of dopants. Therefore, they do not contribute to the oxygen ion transport
through the crystal and decrease the ionic conductivity.

Shimojo et al. deduced from molecular dynamics simulations of YSZ using empirical potentials
that the ionic conductivity is less influenced by the Y-V••O associates, but rather by lower jump
probabilities of oxygen ion around Y3+ dopants. [219,219] Indeed, it is rarely discussed that increasing
dopant fractions lead to migration configurations, where oxygen vacancies and dopants have the
same distance before and after a jump. These configurations possess a symmetric jump profile:
Initial and final states are energetically equivalent. Forward and backward jumps have the same
migration energy. For large dopants, the migration is typically hindered, i.e. the oxygen ion is
blocked. Migration energies increase for an increasing number of large dopants as illustrated in
Fig. 2.18. Meyer and Nicoloso showed using KMC simulations that interactions between nearest
neighbors of oxygen vacancies and dopants are not sufficient to calculate the oxygen ion conductivity,
but rather a migration energy model is required. [220] Martin showed using an analytical model that
the combination of nearest neighbor interaction and reduced jump probabilities could explain the
experimental findings. [37]

< <

Blocking

Figure 2.18: The migration energy increases for an increasing number of large dopants at the mi-
gration edge.

Migration energies were calculated e.g. by Nakayama and Martin for variously doped ceria using
Density Functional Theory (DFT) calculations. [54] However, for similar migration configurations,
the variation of the type of dopant leads to different trends in literature, which has to be investigated
further. [44,221–225]

Therefore, the question remains whether immobilized vacancy-dopants associates, an ordering of
the vacancies and modified jump probabilities exist separately or even simultaneously and may be
mutually dependent.

2.5.2 Varying the Type of Dopant

The oxygen ion mobility depends not only on the dopant fraction but also on the type of dopant.
First theories postulated that the highest oxygen ion conductivity occurs for dopants, which result
into the least distortion of the crystal lattice. [34] In 1981, Wang et al. [167] and Gerhardt-Anderson
and Nowick [33] suggested that the optimal dopant has the ionic radius of the Ce4+-cation. However,

32
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in the next 15 years, different dopant radii leading to the least distortion of the crystal lattice were
proposed. [25,30,226–229]

Alternatively, the influence of different dopants on the ionic conductivity is attributed to the for-
mation of associates. In experiments, EXAFS measurements show the formation of oxygen vacancy-
dopant associates based on coordination numbers or distances between anions and cations. Here,
dopants, which lead to high oxygen ion conductivities like Sm and Gd, involved less formation
of associates than other dopants like Y or La. [208,209,230] However, few EXAFS measurements de-
viate from this rule. [207] NMR measurements confirm a stronger association between Sc dopants
and oxygen vacancies compared to Y dopants and oxygen vacancies. [210] Association energies de-
rived from early impedance experiments and calculations using potentials of the Born-Mayer form
show that dopants, which lead to high oxygen ion conductivities, possess lower association energies
(Fig. 2.14). [33,39,40] Here, oxygen vacancies are less trapped by dopants and have a higher mobil-
ity. According to previous reports, the strong association for small dopants (e.g. Sc) is based on
Coulomb interactions, while large dopants (e.g. La) form associates due to minimal stress in the
crystal lattice. This opposed effects should lead to a minimal association energy for Gd doped ceria.

However, subsequent experiments demonstrated that association energies scatter or activation
enthalpies are even temperature independent and exhibit no kink (Chapter 2.4.4). Association en-
ergies depend on the dopant fraction with a minimum around x = 0.03. For Sm doped ceria, large
association energies are reported despite its high ionic conductivity (Fig. 2.14). Later, empirical [231]

and ab initio calculations [44,54,55] showed that the association energy decreases with increasing ionic
radius up to La. These and further calculations also show that, for large dopants, oxygen vacan-
cies are no longer in closest possible proximity to the dopants (nearest neighborhood, 1NN), but
in the next-adjacent location (next nearest neighborhood, 2NN). [232,233] The latter is in contrast to
calorimetric measurements of La doped ceria where vacancies were found to remain predominantly
in nearest neighborhood to the trivalent dopant. [234] Clearly, the microscopic association between
dopants and oxygen vacancies and the macroscopic experimental association energy e.g. derived
from impedance experiments are connected. However, microscopic and macroscopic processes are
not equivalent. In this work, KMC simulations are used to link both processes.

If the dopant fraction or the type of dopant are varied, experiments suggest a relationship be-
tween conductivity and association energy. As shown in Chapter 2.4.4, the maximum in conductivity
correlates with a minimum in activation enthalpy as a function of dopant fraction and dopant type.
Similar to the association energy, microscopic migration energies and macroscopic activation en-
thalpies are connected. In this work, again KMC simulations are used to link both processes.

In addition to doping with a single dopant, several studies investigate the oxygen ion conductivity
of ceria co-doped with more than one type of dopant. It is commonly assumed that in co-doped
materials the properties of both dopants are averaged. Ralph et al. [235] and Li et al. [236] hoped
that the ionic radii of both dopants are averaged, which could lead to an optimal dopant with
the least distortion of the crystal lattice. However, the ionic conductivity could not be increased.
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Therefore, the authors suggest that local distortions are more important than global deformations
of the lattice, and the strong association between oxygen vacancies and dopants is of particular
importance. Anderson et al. [44] could theoretically and Omar et al. [165,237] experimentally produce
better results with a small ionic radius difference. Further examples were shown by Maricle et al. [238]

and Ralph et al. [239,240] Particularly promising are co-doped ceria, which use widely available and
inexpensive starting materials such as calcium and magnesium. [241] In this work, Sm-Zr and Gd-Zr
co-doped ceria are investigated as Zr impurities are common, especially, if powders are milled using
zirconia balls.
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3.1 Experimental Methods

3.1.1 Composition
The composition of samples can be investigated using Energy Dispersive X-ray Spectroscopy (EDX)
and X-Ray Diffraction (XRD) experiments. [1]

For Energy Dispersive X-ray Spectroscopy (EDX) measurements, electrons emitted by a tungsten
filament are accelerated using a high voltage (20 kV) in vacuum onto the sample. An incident electron
excites an electron in an inner shell, which subsequently is ejected from the sample. The hole is filled
by an electron from a higher energy level while the excess energy, which is characteristic for the
atom, is being radiated. The emitted X-Ray radiation not only allows a qualitative analysis of the
composition, except for elements with low atomic mass, but also a quantitative analysis, after a
calibration is performed.

The structure of crystal lattices can be investigated using X-Ray Diffraction (XRD). [242–244]

Electrons emitted by a hot wire are accelerated using a high voltage (40 kV) in vacuum on e.g. a
Cu-anode. The electrons decelerate creating ‘Bremsstrahlung’ or ionize Cu atoms by removing an
electron from an inner shell. The latter causes electrons from higher energy levels to fill up the hole
leading to an X-ray emission that is characteristic for the ionized element Cu. For example, the
transition of an electron from the p-orbital of the second shell (L-shell) to the innermost K-shell
leads to Kα radiation. While most of the wavelength range of the radiation (e.g. Bremsstrahlung)
is absorbed using a Ni-filter or deflected using a monochromator, the Kα emission is directed to the
sample and scattered at the electron shells of the atoms. In case the atoms are arranged in a periodic
lattice, the reflected waves interfere according to Bragg’s law. [245] Depending on the angle between
incident and reflected radiation (2θ), constructive or destructive interference occurs caused by the
path difference between the diffracted waves (2d sin(θ)). Here, d is the spacing between successive
crystallographic planes of the crystal lattice. Is the path difference an integer multiple (n) of the
wavelength λ of the incident radiation, constructive interference appears according to

2d sin(θ) = nλ. (3.1)

The resulting X-ray radiation from penetration depths of up to a few µm is measured as a func-
tion of scattering angle using a scintillation counter. The constructive interferences give insights
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into the crystal system and the lattice constant. In case the sample composition is known, the
diffraction intensity can be simulated and iteratively adjusted to the experiment using the Rietveld
refinement. [246]

3.1.2 Macroscopic Structure

Density

Since for impedance spectroscopy measurements relative densities above 90% are desirable, [184,247–249]

the density ρs is measured using Archimedes’ principle. [1] Here, the buoyant force raises a body,
which is immersed in a fluid, by the weight of the fluid that the body displaces. Therefore, the appar-
ent weight of the body in the fluidG′ and the actual weight in airG can be compared with the density
of the fluid ρfluid and the volume of the body Vs according to G/(G − G′) = ρs · gVs/(ρfluid · gVs)
where g is the gravitational acceleration. The relative densities can be now obtained as a fraction of
the theoretical density, which is given by ρtheo = Zcell · MNA

/Vcell with the unit cell volume Vcell, the
number of formula units Zcell, the molecular mass M given by Ce1–xRExO2−x/2 and the Avogadro
constant NA. The error of the relative density ρs/ρtheo is estimated to be ±1 %.

Scanning Electron Microscope

The surface structure is investigated using a Scanning Electron Microscope (SEM). [1,250,251] Elec-
trons emitted by a tungsten filament are accelerated using a high voltage (20 kV) in vacuum onto
the sample. The incident electron beam is focused in a raster scan pattern onto the sample where
inelastic scattering leads to the emission of secondary electrons with low energy. The latter are
collected by a detector at the side of the sample resulting in the impression of a top view of the
sample, which is illuminated from the side.

3.1.3 Local Structure
Structural and electronic properties can be investigated by X-ray Absorption Spectroscopy (XAS).
Here, a sample is radiated with X-rays and the absorption coefficient is measured as a function of
energy.

X-Rays are generated by a synchrotron source where charged particles are diverted and accel-
erated by a magnetic field, which leads to synchrotron radiation tangentially to the circular path.
From the broad energy range of the synchrotron radiation, the desired X-Ray energy is selected
using a monochromator consisting of a couple of single crystals (Fig. 3.1). The incident X-Ray beam
can ionize atoms in the sample when the X-ray energy matches the binding energy of an electron
according to the photoelectric effect [252] with the transition probability given by Fermi’s golden
rule. [253] Here, electrons from different energy levels (Fig. 3.2) can be exited with energies charac-
teristically for the ionized atom and its valence. This leads to absorption of the X-Ray beam. The
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Figure 3.1: Setup of a XAS beamline using both X-Ray absorption and fluorescence.

intensity of the radiation is measured before and after the sample by gas ionization chambers filled
with mixtures of N2, Ar and Kr. Alternatively, thick samples can be tilted by 45° and the X-Ray
fluorescence, caused by electrons from higher energy levels that fall into the created electron hole,
can be measured.

2p 2s 1scontinuum
1/2j = 3/2

K-edgeLI-edge

LIII-edge

Figure 3.2: Schematic representation of an electronic excitation with an X-ray quantum. Here, j is
the total angular momentum quantum number of the one electron given by the particle’s spin
and orbital angular momentum.

The X-ray absorption coefficient µ(E) can be depicted as a function of energy (Fig. 3.3), where
the increase in adsorption caused by absorbed X-Rays is referred to as absorption edge or X-ray
Absorption Near-edge Structure (XANES). For solid samples, the higher energy region after the
absorption edge contains the Extended X-Ray Absorption Fine Structure (EXAFS).

The Extended X-Ray Absorption Fine Structure (EXAFS) is caused by the transition of an
electron from a deep core state to an unoccupied state, which is dipole mediated and therefore
influenced by its surrounding. The excited electron can be perceived as expanding spherical wave
that is scattered by neighboring atoms creating new spherical waves. The constructive or destructive
interference between the waves leads to local maxima or minima in the transition probability and
subsequently the absorption coefficient. The resulting sinusoidal oscillation in the absorption coef-
ficient (see Eq. 3.2) is damped by the limited lifetime of the excited photoelectron that is scattered
both elastically and inelastically (second exponential term in Eq. 3.2) and the thermal and statistical
disorder (first exponential term in Eq. 3.2).

The normalized, wave-vector dependent absorption coefficient χ (k) is given by the sum of multiple
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Figure 3.3: X-ray spectrum of an Ce0.975Sm0.025O1.9875 sample, showing the XANES and EXAFS
region on the Ce(K)-edge.

scattering paths χ (k) =
∑
i χi (k) by the EXAFS equation

χi (k) = NiS
2
0

kR2
i

Fi (k) sin [2kRi + δi (k)] e−2σ2
i k

2
e−2Ri/λ(k) (3.2)

with the absolute value of the wave vector k =
√

2meEkin/~2, the kinetic energy of the electron
Ekin, the degeneracy Ni of path i, which corresponds to the coordination number, the many body
amplitude or passive electron reduction factor S2

0 , the distance to the scattering atom Ri, the
effective scattering amplitude Fi (k), the effective scattering phase shift δi (k), the mean squared
displacement σ2

i and the mean free path λ (k). [254]

The degeneracy of path Ni, the distance to the scattering atom Ri and the mean squared dis-
placement σ2

i reveal information about the local structure of about 10 Å around the probed atom.
The degeneracy of path Ni reveals how many neighboring atoms exist. Therefore, the number of
oxygen vacancies near the probed atom can be investigated, which is of special interest in this study.

3.1.4 Conductivity and Diffusion

Overview of Experimental Methods used in Literature

In literature, the conductivity and diffusion in pure and doped ceria were investigated using both
macroscopic and microscopic methods. [255] For example, tracer diffusion and conductivity measure-
ments investigate macroscopic long-range diffusion, whereas Nuclear Magnetic Resonance (NMR)
and NMR relaxation investigate microscopic properties like oxygen vacancy hopping frequencies or
activation energies. All mentioned methods use probe atoms to examine the sample contrary to
conductivity measurements.
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NMR measurements often investigate Sc doped ceria containing 45Sc. [256] At room temperature
and below, magic angle spinning NMR spectra contain two sharp, resolved resonances assigned to
Sc(7) and Sc(8) sites with the Sc-O coordination number 7 or 8, respectively. At 300 °C, a broad
peak centered at the weighted average of both peaks appears due to a fast dynamic cross-exchange
of a small subpopulation between both sites. The width of this peak decreases monotonically with
increasing temperature indicating an increased cross-exchange frequency and can be compared to
simulations using a standard two-site random cross-exchange model.

Alternatively, Sc doped ceria was investigated by spin-lattice relaxation where during a saturation
recovery pulse sequence the magnetization is rotated by 90° followed by relaxation of the system
where the gained energy is dissipated within the lattice. Subbi et al. reported vacancy hopping
around Sc(7) sites with an activation energy of 0.37 eV between 250 K and 550 K. [257]

Tracer diffusion experiments in pure and doped ceria use an 18O/16O isotope exchange at high
temperature, where 18O from an enriched gas phase diffuses into the sample. For Gas Phase Analysis
(GPA) measurements, the decreasing concentration of 18O in the gas phase during diffusion annealing
is measured. [258–260] In Secondary Ion Mass Spectrometry (SIMS) measurements, the concentration
of 18O in the solid after diffusion annealing is measured. The sample surface is sputtered with a
primary ion beam in ultra high vacuum and ejected secondary ions are analyzed. [260] For depth
profiles, the surface is gradually eroded away while sequential SIMS measurements are performed.
Results are shown in Chapter 6 and 7.

Conductivity measurements of pure and doped ceria investigating the ionic conductivity generally
assume that the electronic conductivity can be neglected, which is true for low and intermediate
temperatures in air. While direct current measurements only reveal the total conductivity, impedance
measurements with alternating current may allow a distinction between the conductivity of the bulk
and grain boundary domain.

Impedance Spectroscopy

In this work, the oxygen ion conductivity is investigated using impedance spectroscopy whereat it is
assumed that ions in a solid behave comparably to electrons in an electric circuit. The conductivity
is inversely proportional to the resistivity, which is given by the quotient of current and the preset
excitation voltage. By using alternating voltage, a shift between current I(t) and voltage U(t) arises
with the time t. The shift can be described as a phase angle ϕ (Eq. 3.3) which is negative in a
capacitive circuit (−π2 < ϕ < 0) and positive for an inductive circuit (0 < ϕ < π

2 ). Therefore, the
resistance is phase-dependent and referred to as impedance Z with

Z = U(t)
I(t) = U0eiωt

I0ei(ωt−ϕ) = U0

I0
eϕ = U0

I0
cosϕ︸ ︷︷ ︸
Z′

+i U0

I0
sinϕ︸ ︷︷ ︸
Z′′

(3.3)

where I0 is the amplitude of the current, U0 the amplitude of the voltage and ω the angular fre-
quency. [1,247] Using Euler’s formula, the impedance can be expressed as real part Z ′ and imaginary
part Z ′′, which are traditionally shown as −Z ′′ as a function of Z ′ in the Nyquist plot. [261]
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3.2 Computational Methods

3.2.1 Quantum Mechanical Calculations
Alternatively to experiments, materials can be investigated computationally by solving the time-
independent Schrödinger equation:

ĤΨ = EΨ. (3.4)

Here, the Hamilton operator Ĥ is applied onto the wave function Ψ, whose square modulus can be
interpreted as the probability density of the particle positions, resulting in the investigated energy
eigenvalue E. The Hamilton operator is given by the (potential) interaction with an external field,
the kinetic energy of all particles, the Coulomb attraction between electrons and nuclei as well as
the repulsion between electrons or between nuclei. Here, methods using only theoretical principles
for the Hamilton operator are called ab initio or first principles calculations while methods that
use experimental data are referred to as empirical or semi-empirical calculations. For the ab initio
studies of a solid, several simplifications have to be introduced. [1,262–264]

Nuclei have significantly larger masses than electrons and move much slower. Therefore, to study
electronic properties approximately, the positions of the nuclei can be fixed and the kinetic energy
of the nuclei can be neglected according to the Born-Oppenheimer approximation. [265]

Density Functional Theory

To avoid calculating an electronic wave function with three times as many coordinates as electrons,
Thomas and Fermi suggested the direct use of the three-dimensional electron density ρ(r) and
therefore introduced the first density-functional based theory in the year 1927. [266,267] As a result,
the energy E [ρ (r)] is a functional of the electron density, which itself is a function of the position.
However, Thomas and Fermi approximated the kinetic energy based on a homogeneous electron gas
leading to problems like the missing electronic shell structure and the impossibility of bonding in
molecules and solids.

These problems can be overcome by the two basic theorems for the Density Functional Theory
(DFT) that were formulated by Hohenberg and Kohn in 1964. [268] Obviously, the electron density
is obtained from the wave function, which obeys the Schrödinger equation. Therefore, the ground-
state electron density is a functional of the external potential, which is the Coulomb potential of the
nuclei. [269] The first Hohenberg-Kohn theorem states the reverse: The ground-state wave function is
a unique functional of the electron density since the external potential is a functional of the electron
density. The second Hohenberg-Kohn theorem states that the true ground-state energy is given
by the ground-state electron density, which leads to the lowest energy according to the variational
principle.

How the energy can be calculated from the electron density in practice was given by Kohn
and Sham. [270] They started from the electron density of a non-interacting electron, which can

40



3.2 Computational Methods

be described as the sum of the electronic states, namely ρ(r) =
∑
ρi(r), where ρi(r) = ψ2

i (r)
are one-electron orbital probability densities. In this reference system of non-interacting electrons,
the kinetic energy can be exactly calculated. The energy of the reference system is solved self-
consistently, iteratively using the variational principle for all one-electron Schrödinger-like equations
(called Kohn-Sham equations) for the orbitals ψi(r). The potential, which acts on the electron i,

Vi(r) = Vext,i(r) + VH,i(r) + Vx,i(r) + Vc,i(r), (3.5)

is given by the Coulomb potentials of the nuclei Vext,i(r) and the electrons VH,i(r), the exchange
interaction Vx,i(r) and the correlation term Vc,i(r). [269] The exchange and correlation functionals
include the Pauli exclusion principle and the dynamically correlation of electrons, respectively. Com-
pared to theories like Hartree-Fock, the electron correlation is included in DFT, but the exchange-
correlation-functional is unknown and has to be approximated.

In the Local Density Approximation (LDA), it is assumed that the exchange-correlation energy
is equal to that in a homogeneous electron gas of the same electron density similar to Thomas and
Fermi. While the exchange part is given analytically, the correlation part can be derived from per-
turbation theory or quantum Monte-Carlo calculations. [271] Additionally, the gradient or derivative
of the electron density with respect to the position can be considered in the so-called Generalized
Gradient Approximation (GGA).

Both exchange-correlation approximations fail if the electronic correlation becomes dominant like
in the case of cerium oxide where the Ce 4f -electrons are localized and the Coulomb repulsion is not
described properly. Here, a repulsion parameter U according to Dudarev et al. [272] can be introduced
for example for GGA

EGGA+U = EGGA + U

2
∑
σ

∑
j

ρσjj

−
∑

j,l

ρσjlρ
σ
lj

 , (3.6)

where ρσjl is the density matrix of the f -electrons with a given projection of spin σ, which is for an
individual ion equal to the occupation number of the respective state. [273] The repulsion parameter
is often determined empirically by comparing the theoretical results with experimental band gaps,
magnetic moments, lattice parameters or by assessment of the localization of electrons. [56,274,275]

Bloch’s Theorem and k-Points

Positions in real space are given by the real-space vector

R = n1a1 + n2a2 + n3a3 = a, (3.7)

as linear combination of the real-space basic vectors a1, a2 and a3 with the lattice vector a, while
positions in reciprocal space are given by the reciprocal vector

K = m1g1 +m2g2 +m3g3, (3.8)

constructed from the reciprocal basic vectors g1, g2 and g3.
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For calculations of solids with a vast number of atoms, the following simplifications have to be
introduced. In a perfect crystal, structures appear periodically. As a result, the electronic potential
and the wave function are periodic as well according to Bloch. [276] Then, the translation symmetry
of the wave function by a translation vector T is given by a plane wave eik·T according to

Ψ (k,r + T ) = eik·T ·Ψ (k,r) (3.9)

where r and k are the position in real and reciprocal space, respectively. Due to periodicity and
Kramer’s theorem, all information is given in the first Brillouin zone 0 ≤ |k| ≤ π

a for a cubic unit
cell. For isolators and semiconductors, only a few k-points in this region have to be calculated due to
small changes in the electronic wave function. These can be selected using the original Monkhorst-
Pack scheme [277] creating a reciprocal mesh with the dimensions N1 ×N2 ×N3

k = g1
n1 + 1

2
N1

+ g2
n2 + 1

2
N2

+ g3
n3 + 1

2
N3

, (3.10)

with ni = 0, . . . , Ni − 1. Here, the reciprocal k-point mesh dimensions should be about inversely
proportional to the real lattice dimensions.

Plane Waves

Wave functions can be expressed as a linear combination of exponential functions, naturally following
Bloch’s Theorem as a basis set, with reciprocal lattice vector G.

Ψn (k,r) = eik·r
∑
G

cn (k,G) eiG·r (3.11)

where cn is the mixing coefficient. The number of plane waves can be restricted using a cut-off
energy Ecut

~2

2m |k + G|2 < Ecut (3.12)

where higher cut-off energies increase the number of plane waves with E
3
2
cut. While the flat electronic

wave function between atoms can be easily represented with few plane waves, high potential energies
near the nuclei lead to strong oscillations (node structure) requiring large amounts of plane waves.

To avoid this problem, the strong Coulomb association between valence electrons and nuclei as well
as the Pauli repulsion between valence and core electrons can be described by a weak pseudopotential,
which can be calculated for different atoms. More efficient is the Projector Augmented Wave (PAW)
method where the plane waves are replaced by augmented plane waves. [278]

3.2.2 Monte Carlo Simulations
Though any solid can be investigated using quantum mechanical calculations, the size of a period-
ically repeating supercell, which is shown by the periodic boundary conditions in Eq. 3.9, is com-
putationally limited. Especially molecular dynamics (MD) simulations for the migration of atoms
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or ions, where Newton equations are solved starting from the Boltzmann distribution of the atomic
velocities for a chosen temperature, are limited in time and size. These restrictions are insufficient
for the topics investigated in this study. Here, Monte Carlo Simulations are applicable, which use
energy weighted random processes to simulate physical states or processes.

Metropolis Monte Carlo

The Metropolis Monte Carlo (MMC) method can be used to simulate the thermodynamic equilib-
rium state of a system like the configuration of ions. [279] Generally, an integration over the whole
configuration space is necessary to calculate properties of a canonical ensemble in thermodynamic
equilibrium, which appear weighted by the Boltzmann probability factor p = exp

(
− E
kBT

)
with the

energy of the microstate E, the temperature T and the Boltzmann factor kB. Instead of sampling the
configuration space by choosing configurations randomly and weighting them with the Boltzmann
probability, Metropolis et al. proposed a modified Monte Carlo integration where configurations are
efficiently chosen with the Boltzmann probability and weighted evenly. This importance sampling is
realized by a Markov process where each state is constructed from a previous state using a transition
probability without any further knowledge of preceding states. A sufficient condition to achieve the
equilibrium distribution is a similar transition probability for forward and backward move in the
Markov chain, which is called detailed balance. [280]

Practically, an ideal three-dimensional fluorite-structured lattice consisting of a cation- and anion
sublattice is created and filled randomly according to Eq. 2.1 with cerium or dopant ions and oxygen
ions or oxygen vacancies, respectively. The occupants (ion or vacancy) of two randomly chosen lattice
sites are permuted, if the resulting energy change ∆E is negative or its Boltzmann probability
p = exp

(
− ∆E
kBT

)
is higher than a random number in the interval [0,1[. The latter is repeated until

the average energy is constant.

Kinetic Monte Carlo

In literature, the oxygen ion conductivity in ceria was calculated using analytical models [34–38] and
Kinetic Monte Carlo (KMC) simulations. [41,55,220,224,281–287]

The KMC method can be used to simulate kinetic processes in a system dynamically from state to
state like the oxygen ion migration. [41,288] Instead of propagating the classical equations of motions
forward in time and simulating atomic vibrations in time steps of about 10−15 s, which is done in
molecular dynamics (MD), KMC simulations use the knowledge that systems typically evolve with
time through diffusive jumps from state to state. [289] These occasional jumps shall be limited by
an energy barrier Emig,i,j , which has to be surmounted by the system for each atom i and each
corresponding pathway j. As the transition rate Γi,j = ν0,i,j ·e−

∆Emig,i,j
kBT with the attempt frequency

ν0,i,j depends only on the initial and transition state according to the transition state theory (see
Chapter 2.2), the KMC method is again a Markov process.

Practically, again a three-dimensional lattice is filled similar to the MMC method. An oxygen
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vacancy and jump direction is randomly chosen and the jump is performed, if a random number in
the interval [0,1[ is smaller than the Boltzmann probability pi,j = e−

∆Emig,i,j
kBT . The latter is repeated

until the number of sucessful jumps reaches a prespecified number of Monte Carlo steps per particle
(oxygen ion). [290]

The time for each Monte Carlo step ∆t is given by the total jump rate Γtotal =
∑
i

∑
j Γi,j , which

is the sum of all rates for each vacancy or atom i and each corresponding pathway j. Analog to a
first-order exponential decay process, the probability a jump has not been performed is given by
psurvival = e−Γtotalt and the elapsed time ∆t = − 1

Γtotal
ln(r) can be drawn with a random number r

from the interval ]0,1[. [289] For ceria in thermodynamic equilibrium, the average time is

〈∆t〉 = 1
〈Γtotal〉

=

NV••O∑
i=1

6∑
j=1
〈Γi,j〉


−1

(3.13)

with the number of oxygen vacancies NV••O
and

〈Γi,j〉 = 〈ν0,base · ν0,dev,i,j ·e−
∆Emig,i,j
kBT 〉 = ν0,base〈e−

∆Emig,i,j−kBT ln ν0,dev,i,j
kBT 〉 = ν0,base

MCS

N
(3.14)

with the number of Monte Carlos Steps MCS and the number of jump attempts N and where
the attempt frequency is factorized in a base identical for all jumps ν0,base and a deviation factor
depending on the jump environment ν0,dev,i,j . This results in the total physical time span per
simulation

t = MCS · 〈∆t〉 = N

6NV••O
ν0,base

. (3.15)

Typically numbers of Monte Carlos Steps and total physical time spans are 100 times the number of
oxygen ions and 10−6 s, respectively. At low temperature, jumps are rarely accepted and the number
of jump attempts increases rapidly. In the ‘dynamically scaling’ method, more jumps are accepted
to decrease the computation time. Here the jump probability is compared to a random number in
the interval [0,A[ for a choose number 0 < A < 1 and the total physical time span is divided by A.

To investigate the conductivity, a small electric field with the strength εx is applied in x-direction
and the oxygen ion conductivity is given by the mean displacement of all oxygen ions 〈x〉 in the
field direction: [55,287]

σ = 〈x〉
εxt

qnV••O
(3.16)

where q and nV••O
are the charge and concentration of the oxygen ions, respectively. The electric

field strength has to be chosen large enough to induce a significant mean displacement and small
enough to ensure a linear relationship between mean displacement and field strength. [55] The mean
displacement is investigated in thermodynamic equilibrium; therefore, the anion sublattice has to
be equilibrated by a previous MMC or KMC simulation. Both Monte Carlo methods yield identical
oxygen vacancy distributions as verified in an earlier work. [55]
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4 Experimental and Computational
Details

4.1 Experimental Details
Polycrystalline samples of the composition Ce1–xRExO2–x/2–δ with δ ≈ 0 were prepared according
to an earlier work. [1,291] The rare-earth (RE) cations Sm (x = 0, 0.025, 0.05, 0.07, 0.075, 0.1, 0.125,
0.15, 0.2, 0.225 and 0.25), Lu (x = 0, 0.05, 0.1, 0.15, 0.2 and 0.25), Gd (x = 0.07, 0.1 and 0.2), Y (x =
0.2) and Yb (x = 0.2) were used. Furthermore, the quaternary oxides Ce0.88Zr0.05Sm0.07O1.965 and
Ce0.86Zr0.08Sm0.06O1.97 were prepared. In this work, 20% Sm doped ceria refers to Ce0.8Sm0.2O1.9.

4.1.1 Synthesis and Sample Preparation
Ternary and quaternary oxides can be synthesized by a solid state reaction. Alternatively, reactions
in gas and liquid phase may lead to a more homogeneous distribution of the cations and use a lower
sintering temperature. In this work, the sol-gel method [292,293] is applied, which is characterized by
low cost and low carbon residue. [294] Cerium (III) nitrate hexahydrate (Ce(NO3)3 · 6H2O, 99.9%
Chempur), rare-earth (III or IV) nitrate hydrate (RE(NO3)z · x H2O, 99.9%, with z = 3 for Sm/Yb:
Sigma-Aldrich, Lu/Y: Chempur, Gd: Strem Chemicals or z = 4 for Zr: Alfa Aesar) and citric acid
(VWR International, 2.5 equivalent) were dissolved in water. While for some rare-earth nitrates
the amount of hydration was specified (for Sm/Gd: x = 6, for Yb: x = 5), for other rare-earth
nitrates x was determined by oxidation and gravimetric analysis. Lu doped ceria was synthesized by
Gerald Dück. [295] During mixing for several hours at 50 ◦C, the sol-gel transformation occurred. It
is assumed that the cations are homogeneously distributed and chelated by the citric acid. [47] The
temperature was increased to 120–150 ◦C leading to formation of nitrogen dioxide and subsequently
foaming. The foam was dried for three hours at 350 ◦C, crushed with a glass rod, again dried
for 17 hours when necessary and calcined for four hours at 1000 ◦C with a heating and cooling
rate of about 5 ◦C/min. In contrast, Ce0.85Sm0.15O1.925, which was synthesized and prepared by
Mark Bispinghoff to investigate influences on the macroscopic structure by sintering-variation, was
calcined for six hours.

The calcined powder was crushed in a mortar, dry milled for several hours in a planetary or ball
mill using a Teflon bowl and zirconia balls. For the milling of Ce0.85Sm0.15O1.925 (for the sintering-
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variation), Ce0.93Gd0.07O1.965 and Ce0.86Zr0.08Sm0.06O1.97, ethanol was added and removed after-
wards by heating at 80 ◦C for 20 hours.

The powder was uniaxially pressed to pellets with 10 mm diameter of ca. 0.7 g using a force of
25 kN for 25 min. The pellets were sintered in air at 1400 ◦C for 24 hours with a heating and cooling
rate of 200 ◦C/hour. For the sintering-variation, samples with different sintering temperatures T and
sintering times t are prepared with a heating and cooling rate of 150 ◦C/hour. Here, the samples are
named according to T -t, whereat the actual temperatures deviated of about −1% (up to 1275 ◦C)
and +1% (1350 ◦C and above) from the nomenclature.

The samples were polished with silicone oil on silicon carbide paper (P600, P800, P1000, P2500
and P4000 with the grain sizes 26, 22, 18, 10 and 5 µm for 1, 1, 2.5, 5 and 10 min).

4.1.2 Composition
The compositions were successfully verified using EDX measurements (Oxford INCA, Oxford In-
struments, Abingdon, UK). Using XRD measurements (θ/θ-diffractometer, STOE & Cie GmbH,
Darmstadt, Germany with secondary monochromator or X’Pert Pro diffractometer, PANalytical,
Almelo, Netherlands with Ni-Filter), the phase purity was investigated and the lattice parameter
was compared to literature (Fig. 2.3).
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Figure 4.1: X-ray diffractogram of Gd doped ceria (Ce0.8Gd0.2O1.9) in linear (left) and logarithmic
(right) representation.

However, first XRD measurements for example of Ce0.8Gd0.2O1.9 powder showed several peaks
with minor intensity, which could not be assigned according to literature data (see Fig 4.1). These
peaks (especially at 27.25° 2θ) appeared regularly before the assigned doped ceria peaks. For non-
stoichiometric ceria, in fact, a linear increase in the pseudocubic lattice parameter for increasing
non-stoichiometry was found. [25] Since the powder was calcined in air for four hours at 1000 ◦C in
compliance with literature, non-stoichiometry was not anticipated according to the phase diagram
of doped ceria. [296] The XRD measurements were repeated for crushed pellets in cooperation with
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Dr. Lars Peters and Angelika von Berg from the Institute of Crystallography (RWTH Aachen
University). As pellets were additionally sintered at 1400 °C for 24 hours, stoichiometric doped
ceria was expected. However, again several minor peaks were observed. Figure 4.1 shows a Rietveld
refinement of the crushed pellet using Cu radiation and only a simple background function. Further
investigations revealed that the minor peaks are caused by impurities in the X-Ray tube rather than
being a second phase in the sample. Finally, compositions and phase purity could be verified.

4.1.3 Macroscopic Structure:

Varying the Sintering Temperature and Duration

Density

In literature, the sample density increases with increasing sintering temperatures (see Fig. 4.2).
Depending on the sample preparation technique, densities above 90% can be reached above 1000 °C
using nano-sized powder by carbonate coprecipitation [297] or 1300 °C using commercial powder. [298]

A high density is required for precise impedance measurements. [247]
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Figure 4.2: Density (left) and grain size (right) as a function of sintering temperature in literature.
Sintering durations in hours are noted inside the symbols. Lines are a guide to the eye only.
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In this work, dense samples could be produced for sintering temperatures above 1260 °C or sinter-
ing durations above 24 hours at 1190 °C (see Fig. 4.3, densities have an error of 1%). For parameters
below these values, the density is significantly lower. Increasing either sintering temperature (blue
arrow) or sintering durations (red arrow) increases the density according to literature [69] though few
exceptions are quoted in literature. [304] As expected, the influence of temperature is larger than the
influence of time, which was shown by varying both parameters while maintaining similar densities
(green arrow). Here, for small changes in sintering temperature, large changes in sintering duration
are necessary.

Density measurements according to the Archimedes method gave similar results in water and
ethylene glycol. Using better grinding techniques, starting from an agate mortar to a ball mill to a
planetary mill, as well as faster rotation both increases the density. Varying time and force for the
uniaxial pressing as well as additional isostatic pressing barely influences the density. [1] Particularly
high densities could be achieved for pure (98–99%) and lightly doped ceria. Densities over 95%
could be reproduced within the measurement error of 1% using the same sample preparation.

0 1 0 2 0 3 0 4 0 5 0 6 0
1 1 0 0
1 1 5 0
1 2 0 0
1 2 5 0
1 3 0 0
1 3 5 0
1 4 0 0
1 4 5 0
1 5 0 0
1 5 5 0

8 9  %

9 0  % 8 9  % 9 4  % 9 5  %

9 6  % 9 7  %

9 6  % 9 7  %

9 8  %

9 7  % 9 7  % 9 8  % 9 7  %

0 . 2 2

0 . 2 7 0 . 3 0 0 . 3 1 0 . 5 4

0 . 6 0 0 . 7 0

0 . 7 0 0 . 7 3

1 . 0 3

1 . 4 3 1 . 7 2 2 . 4 6 5 . 9 3

 

 

T sin
ter

 (°C
)

s i n t e r i n g  d u r a t i o n  ( h )

                                     .r e l a t i v e  d e n s i t y
g r a i n  s i z e  ( µm )

0 1 0 2 0 3 0 4 0 5 0 6 00 . 2
0 . 3
0 . 4
0 . 5

1
2
3
4
5
6

         T s i n t e r
 1 2 0 0  ° C
 1 5 0 0  ° C
 1 4 0 0  ° C  ( 2 0 %  G d )  [ a ]

gra
in 

siz
e (

µm
)

s i n t e r i n g  d u r a t i o n  ( h )

Figure 4.3: Density and grain size as a function of sintering temperature and sintering duration for
Ce0.85Sm0.15O1.925 in comparison with [a] literature (Ce0.8Gd0.2O1.9). [300]

Scanning Electron Microscope

Grain sizes are investigated by SEM (LEO/Zeiss 1450VP, Carl Zeiss, Oberkochen, Germany). In
literature, different methods for image analysis are used. [305]

In this work, pellets used for the sintering-variation were chemically etched using 36% hydrochlo-
ric acid for 5–20 min at 20 °C. For samples sintered at 1500 °C, breaking edges were investigated.
All other pellets were thermally etched using 1300 °C for 16 h with a heating and cooling rate of
200 °C/h. All samples show dense surfaces with few holes in the µm range (see Fig. 4.4). Grain
sizes were determined by a manual trace of 50–300 grains. Since only an undefined cross section of
grains is visible, the maximum diameter (Feret diameter) is given (see Fig. 4.3). Grain sizes are in
agreement with literature (see Fig. 4.2 and 4.3). [306] The width of the distribution of grain sizes is
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nearly proportional to the grain size itself leading to a standard deviation in grain size of 30%.
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Figure 4.4: SEM measurements of Ce0.85Sm0.15O1.925 for different sintering temperatures and du-
rations as well as Ce1–xRExO2–x/2 with RE = Sm, Lu as a function of dopant fraction. Tonal
values are adapted.

Grain sizes and density both increase with sintering temperature and sintering duration, which is
in agreement with literature (Fig. 4.2). [69] However, their ascending slope is quite different. Between
1100–1300 °C, the density increases significantly (e.g. 89–96% for t = 10 h) while the grain sizes
increases only moderately (e.g. 0.22–0.60 µm for t = 10 h). Between 1300–1500 °C the grain sizes
increases significantly (e.g. 0.60–1.72 µm for t = 10 h) while the density increases only moderately
(e.g. 96–98% for t = 10 h). Therefore, between 1100–1300 °C the densification dominates while
between 1300–1500 °C the grain growth dominates, which is in agreement with literature. [298] At
higher temperature, the increase in grain sizes for longer sintering durations is significantly larger.
If the sintering temperature is decreased, the sintering durations has to be considerably increased
to maintain the same grain size, which was not fully accomplished in this work (green arrow in
Fig. 4.3).

Grain sizes are similar for variously doped ceria (about 1–2 µm). Only for Ce0.85Lu0.15O1.925 and
Ce0.8Lu0.2O1.9 smaller grain sizes were found (0.5±0.1 µm). Pure ceria has a significantly larger
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grain size (10 µm), which is in agreement with literature. [64] Varying the grinding technique barely
influences the grain size.

4.1.4 Local Structure

XAS Setup

X-Rays were generated in the positron storage ring Doris III (DESY, Hamburg, Germany), where
positrons were accelerated to an energy of 4.5 GeV. Experiments were performed in HASYLAB at
Beamline C. For the monochromator, a Si (111) single crystal couple for the 2.3–22.3 keV energy
range or a Si (311) for 4.4–43.4 keV was used. X-Ray fluorescence was measured using a Passivated
Implanted Planar Silicon detector (PIPS) with 75 mm diameter.

The investigated samples, the investigated edges and the reference samples are shown in Table 4.1.

Sample Sample Edge Reference Reference Edge

pure and Sm, Gd, Y doped ceria Ce(K) CeO2 Ce(K)
Sm doped ceria Sm(LI) Ni Ni(K)
Gd doped ceria Gd(LIII) Ni Ni(K)
Y doped ceria Y(K) Y Y(K)

Table 4.1: Samples investigated by EXAFS.

XAS Data Processing
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Figure 4.5: Evaluation of an EXAFS measurement of 2.5% Sm doped ceria as a function of the
incident X-Ray energy.

The XAS data was processed using the program Athena [307] by (a) fitting of the pre- and post-edge
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regime, (b) normalization of the absorption coefficient and (c) energy alignment of the absorption
edge.

The pre- and post-edge regimes are fitted using a linear function and a second-degree polynomial,
respectively (Fig. 4.5a). Afterwards, the absorption coefficient µ (E) is normalized by subtracting
the fitted pre-edge regime and dividing the result by the difference between fitted post- and pre-edge
regime (Fig. 4.5b).

To compare different samples, all energy axis have to be aligned to a point of reference provided
by the reference sample (Table 4.1), since energy-shifts between measurements, for example due to
the monochromator, are common. For this purpose, the inflection point E0 is determined. While the
energy alignment worked well for the Ce(K)-Edge in Sm doped ceria, other energy alignments may
possess larger errors.

Still, even the XANES Ce edge energy fluctuates (Fig. 4.6). As no change in the valence state
for the cerium cations at room temperature is assumed (Chapter 2.1.3), which is confirmed in
other EXAFS measurements, [206,207,230] the deviations may be due to alignment problems with the
reference spectrum.
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Figure 4.6: Normalized X-Ray Absorption at the Ce(K)-edge (XANES) of Ce1−xSmxO2−x/2.

EXAFS Data Processing

The local structure can be investigated by transforming the EXAFS region of the absorption co-
efficient into a modified Radial Distribution Function. Therefore, the following steps have to be
performed: (a) A background removal, (b) the transformation from the energy into the wave vector-
range and (c) a Forward Fourier transform.

At first, the difference between the absorption coefficient with and without interference has to be
calculated. As the absorption coefficient without interference cannot be measured, a spline function
µ0 (E) is assumed (see Fig. 4.5b). [308] By removing the background function, the normalized µ (E)
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Figure 4.7: Evaluation of an EXAFS measurement of 2.5% Sm doped ceria.

is transformed to the pure EXAFS oscillation χ (E) according to

χ (E) = µ (E)− µ0 (E)
µ0 (E0) (4.1)

Commonly, the EXAFS oscillation χ (E) is given as a function of the absolute value of the wave
vector χ (k) using

k =
√

2me (E − E0) /~2 (4.2)

with the electron mass me. For larger energies or wave vectors, the EXAFS oscillation decays.
Therefore, χ (k) is weighted with k2 in this work (Fig. 4.7a).

The kn-weighted EXAFS oscillations as a function of the wave vector knχ (k) can be transformed
into a pair correlation function or Radial Distribution Function (RDF)1 in the direct space |χ (R) |
using a Forward Fourier transform according to Eq. 4.3 (Fig. 4.7b). [309,310] For this purpose, only
a limited k-range similar for all samples is selected by applying a window function W (k) between
about 2–11 Å−1 depending on the signal-to-noise ratio.

χ (R) = 1√
2π

kmax∫
kmin

kn · χ (k) ·W (k) · e2ikRdk (4.3)

For pure and doped ceria, the Radial Distribution Function around a cation (Fig. 4.7b) shows
contributions of oxygen ions or vacancies (first peak) as well as cerium ions or rare-earth dopants
(second peak). In this work, the distribution of the oxygen vacancies is investigated. Therefore, the
occupation of the first coordination shell is of particular interest and can be investigated by modeling
the EXAFS oscillation.

1In contrast to a pair correlation function, |χ (R) | still possess a phase shift δi for the different
scattering paths, which is corrected by fitting with the EXAFS equation.
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Modeling: The EXAFS Equation

As the structure of the pure and doped ceria is well known, χ (k) can be modeled using the EXAFS
equation and fitted to the experimental data. The EXAFS oscillation was modeled using the program
Artemis [307] and IFEFFIT. [311] The EXAFS equation calculates χ (k) as a sum of multiple scattering
paths χ (k) =

∑
i χi (k) with

χi (k) = NiS
2
0

kR2
i

Fi (k) sin [2kRi + δi (k)] e−2σ2
i k

2
e−2Ri/λ(k) (4.4)

using NiS2
0 = ampi ·N0, k =

√
2me (E − E0) /~2 and Ri = R0 + ∆Ri. (4.5)

For the crystalline ceria structure, the initial distance to the scattering atom R0 and the sample-
independent degeneracy of path N0 are given by theory. The effective scattering amplitude Fi, the
effective scattering phase shift δi and the mean free path λ (k) were calculated using the ab initio
program code FEFF8. [312]

A ceria reference sample can be used to determine the energy shift E0 and the mean squared
displacement σ2

i .

Therefore, only the amplitude ampi and the change in distance to the scattering atom ∆Ri for
each path are the fitted parameters for each sample. The local structure is given by Ni and Ri which
show the number and distance of neighboring atoms.
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Figure 4.8: Modeling an EXAFS measurement of 2.5% Sm doped ceria.

To model the EXAFS oscillation only a limited number of scattering paths, which contribute in
the investigated R-region, is selected. Figure 4.8 shows the Radial Distribution Function of 2.5%
Sm doped ceria with (a) two and (b) 11 fitted scattering paths. The simple model in (a) uses only
the two scattering paths that possess amplitudes ten times bigger than nearly all other paths in the
(b) extended model. As the difference between both models is small, only the two main scattering
paths are considered in this work. Results are shown in Chapter 5.2.2.
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4.1.5 Conductivity
For impedance measurements, top and bottom of the samples were thinly coated with platinum
paste. Subsequently, a platinum wire, which was formed into a spiral with three turns, was attached
to the sample. After drying on a hot plate, the samples were heated at 1000 °C for 3 hours with a
heating rate of 0.5 °C/min and cooling rate of 0.9 °C/min to consolidate the contact and make the
platinum paste porous.

Impedance spectroscopy measurements were performed using a Solatron 1260 (Schlumberger)
and a 2-point geometry. After heating, the temperature in the furnace is constant (±1 °C) after
a waiting time of about 3 hours. It is assumed that at this point the sample is in thermodynamic
equilibrium, which could be shown at 270 °C by the synchronous evolution of bulk conductivity with
temperature. [1] The impedance was measured for frequencies between 107 and 7 ·10−2 Hz using 199
points with equidistant logarithmic spacing. Between 7 · 10−02 Hz and 20 Hz, measurements were
repeated five times and averaged. Therefore, the impedance measurement for each temperature takes
37 min. Including the waiting time, a total dwell time of 280 min was chosen.
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 -Z
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(b) used R1+Q2/R2 model

Figure 4.9: Equivalent circuit models.

Impedance measurements are often shown in the Nyquist plot, where the negative imaginary part
as a function of the real part is given (see Fig. 4.9a and 4.10). The impedance of the solid electrolyte
is compared to an electric circuit, which is then called equivalent circuit. J.E. Bauerle [313] proposed
in the year 1969 an equivalent circuit for solid electrolytes consisting of a bulk, a grain boundary
and an electrode contribution. Though many other equivalent circuits have been proposed, [171] a
modified variant of Bauerle’s equivalent circuit model consisting of three resistor-capacitor circuits
(RC circuit) is commonly used. The equivalent circuit is shown in Fig. 4.9a with the resistances Ri
and capacitances Ci. For pure and doped ceria, the bulk, grain boundary and electrode contribution
appear each as a semicircles in the Nyquist plot with decreasing frequency. [174,176,177,185,297] For the
resulting equivalent circuit, the capacitance increases from bulk to electrode contribution.

Rarely all contributions can be measured at the same time due to the limited frequency range in
the experiment. Beyond that, interferences caused by other electric fields and overlapping semicircles
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appear. Therefore, in this work, every semicircle is fitted individually using the equivalent circuit
model shown in Fig. 4.9b. Fitting semicircles individually may lead to an overestimation of the
resistance. For Lu doped ceria, bulk and grain boundary semicircle were fitted both simultaneously
and separately. For the fit of individual semicircles, the resistance was overestimated up to 5% for
the bulk domain and up to 10% for the grain boundary domain. For Sm doped ceria and dopant
fractions above 10%, the separation of the grain boundary and electrode semicircles was challenging
leading to a large error on the grain boundary conductivity.

For most measurements, the center of the semicircles was found to be below the x-axis, the
semicircles appear flattened. The reason for this is the dispersion of physical properties in the sample.
This behavior is especially typical for double-layer regions in the grain boundaries, rough electrode
surfaces, non-homogeneous reaction rates at the surface due to different platinum coating and uneven
current distribution on the surface. Therefore instead of a capacitor, a constant phase element Q with
the impedance 1/Z = (iω)nQ is used for the equivalent circuit model (Fig. 4.9b). [69,169,176,178,247] For
n = 1, the constant phase element is a capacitor. For smaller n, semicircles appear more flattened.
Capacitance C and Q-value can be compared in a pseudo-capacitance using a model according to
Hsu and Mansfeld: [314]

C = Q · (ωmax)n−1 (4.6)

with the angular frequency ωmax at the vertex of the semicircle for which the imaginary part is a max-
imum. The semicircles are assigned according to their capacitance to the bulk and grain boundary
domain. [315] Few impedance spectra exhibit additional semicircles as discussed in literature. [74,316]

Impedance measurements were analyzed using EC-Lab (BioLogic) and a consecutive Randomize
(10000 steps) and Simplex-algorithm (5000 steps) with similar results to a Marquardt-Levenberg
algorithm. Ceria is investigated between 50 °C and 750 °C in steps of 50 °C (furnace temperature).
However, bulk conductivity could only be investigated up to 550 °C (except for pure ceria up to
750 °C) and grain boundary conductivity only above 100 °C (400 °C for pure ceria) due to the limited
frequency range.1 The contributions were assigned based on their pseudo-capacitance according to
literature. The capacitance of the bulk domain is in the range of tens of picofarads (10−11 F), which
is consistent with the geometric capacitance of the samples according to literature. The capacitance
of the grain boundary domain is in the range of tens of nanofarads (10−8 F). [167,170,315]

The ionic conductivity is calculated according to

σi = l

Ri ·A
(4.7)

for the bulk and grain boundary domain respectively, where Ri is the resistance according to the
equivalent circuit, l the thickness of the sample and A the surface area. The sample dimensions
are chosen similarly for bulk and grain boundary domain. Errors arise due to the equivalent circuit

1In literature, bulk conductivities are given for higher temperatures. Here the bulk resistance is
calculated from the difference of the total resistance and the extrapolated grain boundary
resistance.
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Figure 4.10: Nyquist plot with fitted equivalent circuit model for Ce0.75Sm0.25O1.875 at 200 °C.

fit, the thickness of the sample (about ±0.02 mm) and the diameter of the pellets. The resulting
error on the conductivity is mostly smaller than the symbol sizes used in this work. The prefactor
of diffusion and the activation enthalpy is determined according to Arrhenius (see Chapter 2.2).
For selected samples, the conductivity behavior is divided into temperature regions according to
literature. [74,317]

Impedance spectroscopy measurements could be easily reproduced even with different samples
based on the same synthesis and preparation. However, fitting the impedance data according to
equivalent circuits can lead to different conductivities if the used equivalent circuit or selected
frequency range for fitting is varied. Still, the resulting error in conductivity has only a small impact
on the activation enthalpy.

The Brick Layer Model

The macroscopic grain boundary conductivity σmac
gb according to Eq. 4.7 is independent of the sample

dimensions. However, σmac
gb still depends on the geometry of the grains and its grain boundaries.

Several models have been developed to investigate the microscopic grain boundary conductivity σmic
gb

of the grain boundaries itself. Important classes are the effective medium theory and the brick layer
model. [318–323]

Effective medium theories based on Maxwell [324] describe grains, which are surrounded by an
effective medium that has the effective conductivity of a mixture. [325–327] Kidner et al. [328,329] use
the Maxwell-Wagner/Hashin-Shtrikman model (MW-HS), [325,330] which can be described as a space-
filling array of similar coated spheres that have different sizes. Though the MW-HS model is rarely
used to describe the microstructure of doped ceria, its bounds can be used to show if other models
are physically unrealistic.

The first brick layer model (BLM) is the Bauerle equivalent circuit for the bulk and grain bound-
ary [313] consisting of two RC-elements in series. Beekmans and Heyne [331] described a model based
on this equivalent circuit consisting of grains, which are surrounded by grain boundaries. This model,
which was later named brick layer model, [323,332] only considers the series path through grain and
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grain boundary (see Fig. 4.11a) and is therefore referred to as S-BLM.
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Figure 4.11: Equivalent circuit and schematic representation of the brick layer models.

Other equivalent circuits leading to the same impedance like the blocking zone model [313] and
the construction model [171,333] have been discussed.

Later brick layer models also considered a parallel path, which consists of the grain boundary
side-walls and is again represented with a RC-element (Fig. 4.11b). This parallel path can contain
either similar (SP-BLM) [334] or different grain boundary properties (SP’-BLM) [328] than the series
path.

Finally, the nested cube model by Kidner et al. [328,329] builds up a three-dimensional body based
on pixels, which are assigned to either grain or grain boundary (3D-BLM, Fig. 4.11c). The pixels are
constructed from a finite-difference node at its center from which six RC-elements extend to the next
interconnected pixel. System sizes up to 803 pixels were solved numerically using a finite-difference
computer algorithm.

In the limit of thin grain boundaries, the brick layer models are a good approximation for the
physical properties of electroceramic microstructures and can describe the conductivity well based
on mapping individual impedance semicircles corresponding to bulk and grain boundary. Beyond
this limit, e.g. for nanocrystalline materials, only the 3D-BLM can be used. However, as grains
have not the form of cubes, deviations are to be expected here and impedance semicircles are now
influenced by both bulk and grain boundary. Additionally, with increasing complexity, the solution
of brick layer models is mathematically challenging. [318]

For effective medium theories, closed-form solutions exist. However, as the Maxwell-Wagner/Hashin-
Shtrikman model does not represent electroceramic microstructures directly it is rarely used. Though
an equivalent circuit analogy exists, [335] impedance arcs are influenced by both bulk and grain
boundary.

In this work, grain sizes dg are much larger compared to the grain boundary thickness δgb which
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allows the use of a brick layer model. Since the grain boundary conductivity is significantly lower
than the bulk conductivity, the microscopic behavior is modeled using the S-BLM model (Fig. 4.11a)
as the conductivity due to a pure grain boundary path can be neglected. [176,315] This allows the in-
vestigation of individual impedance semicircles, which have either bulk or grain boundary properties.
Therefore, the following relation between microscopic and macroscopic grain boundary conductivity
can be established:

σmic
gb = δgb

dg
σmac
gb . (4.8)

Hence, the macroscopic grain boundary conductivity is large for large grain sizes and thin grain
boundaries. While grain sizes dg can be determined using chemical and thermal etching in combina-
tion with SEM, defining and measuring the grain boundary thickness δgb is difficult. Here, the crys-
tallographic grain boundary, which is the crystallographic mismatch zone observed by Transmission
Electron Microscopy (TEM) of about 1 nm, can be distinguished from the electrical grain bound-
ary, which additionally includes adjacent space-charge layers and is often connected with the Debye
length. [336,337] Therefore, often the capacitance of the bulk Cbulk and grain boundary domain Cgb

is used: [318,337–339]
δgb
dg

= Cbulk

Cgb
· εgb
εbulk

. (4.9)

Commonly it is approximated that εbulk ≈ εgb resulting in

σmic
gb ≈

Cbulk

Cgb
σmac
gb . (4.10)

Using this method in yttria-stabilized zirconia (YSZ), grain boundary thicknesses were calculated
to be about 5.0 nm, [339–341] or 5.4 nm, [332] independent of grain size. [337] For doped ceria, grain
boundary thicknesses between 3–50 nm were reported [306] while, in this work, δgb is about 2–5 nm for
pure and Sm doped ceria. For nanocrystalline doped ceria, also smaller grain boundary thicknesses
were found. [338]

The Total Conductivity

According to the serial brick layer model (S-BLM), the total resistivity is the sum of the macro-
scopic resistivities of bulk and grain boundary domain, Rtotal = Rbulk + Rgb. Therefore the total
conductivity

σtotal = l/A

Rbulk +Rgb
(4.11)

is always dominated by the higher resistivity or the lower conductivity according to

σtotal = σbulk · σgb
σbulk + σgb

. (4.12)
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4.2 Computational Details

4.2.1 Quantum Mechanical Calculations

General Computational Setup

Quantum mechanical calculations were performed using the Vienna Ab initio Simulation Package
(VASP) [342,343] calculating geometric parameters and energies at zero temperature. All ab initio
calculations were carried out within the scope of the Density Functional Theory (DFT) using the
Generalized Gradient Approximation (GGA) according to Perdew, Burke and Ernzerhof (PBE) [344]

and the projector augmented-wave method (PAW). [278] Alternative methods like LDA and HSE
have been investigated in literature. [56] Hafner discusses the advantages of the different exchange-
correlation-functionals. [345]

For the plane waves, an energy cut-off of 500 eV was chosen. Supercells consisting of between 8 (a
multiplication of 2× 2× 2 unit cells in each dimension) and 64 unit cells (4× 4× 4) were employed.
A Monkhorst-Pack k-point mesh between 2× 2× 2 for the 2× 2× 2 supercell and 1× 1× 1 for the
3× 3× 3 supercell or larger supercells were investigated.

The 5s25p66s25d14f1 electrons of the cerium atoms were treated as valence electrons. Similarly, the
5s25p66s25d1 electrons of the lanthanum, neodymium and samarium atoms, the 5p66s25d1 electrons
of the gadolinium, erbium, thulium and lutetium atoms, the 5p66s2 electrons of the ytterbium atoms,
the 3s23p63d14s2 electrons of the scandium atoms, the 4s24p64d15s2 electrons of the yttrium atoms,
the 3p6 3d5 4s2 electrons of the manganese atoms and the 2s22p4 electrons of the oxygen atoms
were treated as valence electrons.

To account for the localization of strongly correlated f-electrons, a Hubbard U parameter was
introduced by the rotational invariant approach. [272] A repulsion parameter of U = 5 eV for the
4f-orbitals of cerium was chosen according to earlier studies [45,218,224,275,346–350] though also other
values have been proposed. [56,274,351–354]

The total number of electrons in the cell was adapted for all defective cells to reproduce the actual
charge state of the defects according to Eq. 2.1, e.g. (Ce108O215)2+ for a 3×3×3 supercell containing
one oxygen vacancy. Though charge-neutral cells containing defects according to Eq. 2.1 without
adjustment of the number of electrons would be preferable, in this work interactions between defects
shall be limited. Therefore, charge-neutral cells with large distances between defects are virtually
divided into oppositely charged cells. Charged cells are calculated by VASP assuming a neutralizing
background charge, which is a valid approach as shown in literature. [355]

The convergence parameters for electronic and ionic relaxation were set to at least 10−5 eV and
10−2 eV/Å, respectively, to guarantee a sufficient accuracy of the calculated forces.

A lattice constant of 5.49 Å was calculated for defect-free ceria using the Birch-Murnaghan
equation of state, which is larger than the experimental lattice parameter due to the chosen set
of parameters, [356–358] and applied for all calculations as performed in literature. [51,359,360] For all
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calculations, the internal atomic positions in the cell were relaxed (changed to minimize the energy
of the cell) without changing the lattice parameter. Only for selected constant pressure calculations,
the lattice parameter was optimized for zero pressure.

Calculated energy differences between cells in VASP are reproducible (about ±0.001 eV) due to
high electronic and ionic convergence parameters. Transition state related properties have a lower
accuracy (about ±0.01 eV) as finding the exact ionic geometry is challenging. The choice of potential
and especially supercell size affects calculated energies significantly. Furthermore, deviations from
the correct energies might also be introduced by using the DFT with the GGA.

Association Energies between Defects

The association energy is the energy, which is required to move two defects from an infinite distance
towards adjacent lattice sites. Possible defects are oxygen vacancies (V••O or V) and dopant cations
(RE

′

Ce or RE). Possible distances between defects are numbered consecutively with 1NN being the
nearest neighbor position and 2NN the next nearest neighbor position. As an infinite large defect
distance in an infinitely large supercell cannot be calculated,1 association energies are approximated
as difference to the largest calculated defect distance. The right choice of the largest calculated
defect distance, which is in the following referred to as termination, will be discussed in this work.

Figure 4.12 shows the attractive RE-V association energy for RE doped ceria in a 2 × 2 × 3
supercell calculated up to a RE-V distance of 9 Å. [1] Due to the convergence of the energies, it can
be concluded that the assumption of a 6NN RE-V association energy of zero is a good approximation.
The convergence is similar to YSZ according to Eichler. [361] In another earlier work from 2014, [55]

only the 1NN and 2NN RE-V association energy was given and all other association energies were
assumed to be zero. However, the maximum RE-V distance depending on the supercell size was
calculated. In this work, the possibility of using the 3NN RE-V association energy as a maximum
RE-V distance will be discussed.

Figure 4.12 also shows the monotonous increase of the 1NN RE-V association energy (or decrease
of its absolute value) with increasing dopant size, which correlates with the electronegativity. For
the 2NN association energy, a minimum for the absolute value of the Y-V association compared to
other dopants appears. An energetically preferred 1NN association is found for small dopants (e.g.
Sc), while for the large dopant La the absolute value of the 2NN RE-V association energy is larger.
For comparison, the Coulomb energy was calculated

ECoulomb = q1 · q2

4πε0εrr
(4.13)

with the charge of the defects compared to an ideal lattice q according to Eq. 2.1, the dielectric
constant for vacuum ε0, the relative dielectric constant for pure ceria εr of about 25, which was
calculated using DFT and the defect distance r. The classical Coulomb energy, calculated for an

1Actually, cells with isolated defects can be used. However, earlier investigations show that this
method may introduce major errors. [54,55]
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Figure 4.12: Total energy difference between 1NN and 6NN RE-V and corresponding lattice sites for
RE doped ceria in a 2×2×3 supercell taken from an earlier work. [1] Distances between 1NN and
6NN RE-V were calculated. The dashed line shows the Coulomb energy. Other Lines are a guide
to the eye only. Cerium ions are green spheres, dopants are blue spheres, the oxygen ions are red
spheres and the oxygen vacancy is a red cube.

ideal lattice geometry, possesses a larger absolute value compared to the calculated association
energies, with the exception of the 1NN Sc-V association. Reasons for this deviation are local lattice
relaxations and different electron densities. These effects lead to a large difference between the
association energies of different dopants as already found in literature. [44,54]

Migration Energies of Oxygen Ion Jumps

The Nudged Elastic Band method (NEB) [362–364] was applied to investigate the transition states and
the minimum energy pathways. The ionic configuration for the saddle point configuration (‘image’)
was interpolated from the initial and final state of the migration process. During the NEB calcu-
lations, the atom positions of the interpolated image are relaxed whereat an artificially introduced
spring force (−5 eV/Å) counteracts deviation of atom positions compared to adjacent images (here:
initial and final state).

Tests with more than one intermediate image between the initial and final configuration of the mi-
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gration showed no differences in the migration energies. The same is true for tests using the climbing
image nudged elastic band method (CI-NEB). [365] For the latter, deviations in the lattice geometry
of only ±0.0001 Å were found. Selected jump configurations were also successfully compared with
the improved dimer method. [366,367] Only doping with several Sc dopants causes severe problems
during the Nudged Elastic Band (NEB) calculation due to the small ionic radius of Sc, which leads
to large lattice distortions and a very low solubility of Sc in ceria.

Diluted Defects and Finite Size Correction

Association and migration energies strongly depend on the finite supercell size due to the interactions
of the defects with their image in other cells. Therefore, in literature, generally large supercell sizes
are recommended. Alternatively, Freysoldt et al. propose a method based on the local electrostatic
potential given by VASP to correct electrostatic finite size errors. In this work, the Freysoldt method
did not lead to the desired result due to the extended defect clusters. [368]

Makov and Payne formulated an analytic expression to correct the electrostatic energy created
by periodic boundary conditions in calculations. [369] The energy of an isolated defect Eisolated is
given by the calculated energy Efinite by

Eisolated = Efinite + α · q2

2εL + 2π · qQ
3εL3 +O

(
L−5) (4.14)

with the Madelung constant α depending on the type of lattice structure, the charge q and the
quadrupole moment of the defect Q, the linear dimension of the supercell L ∝ V

1
3 proportional to

the third root of the volume of the supercell V , dielectric constant ε and unspecified function O

depending on L−5, which may be neglected for larger supercell sizes.
As both association and migration energies depend only on differences between two cells, the

monopole interaction (L−1) is neglected. In this work, the dipol interaction (L−3) is corrected.
Therefore, different supercell sizes are fitted as a function of volume. Equation 4.14 is only valid for
cubic supercells. Non-cubic supercells, which were still used in an earlier work from the year 2014
(‘model 2014’), [55] lead to major deviations as discussed in the following chapters.

In the following, two models are presented. In the model 2014, [55] edge energies were only cal-
culated in a 2 × 2 × 2 supercell while the model 2015 includes edge energies extrapolated from a
2× 2× 2 and a 3× 3× 3 supercell to an infinitely large supercell.

Phonon Calculations

For phonon calculations, the convergence parameters for electronic and ionic relaxation were in-
creased to 10−8 eV and 10−4 eV/Å, respectively.

Phonon frequencies at constant volume were calculated using the finite difference method, which
was introduced by Parlinski et al., [370] implemented in the commercial software MedeA.

The ionic geometries of all investigated structures were relaxed, subsequently displaced by
±0.005 Å and the electronic ground state was calculated. Using the Hellmann-Feynman forces
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on the ions, a force constant matrix was built and Fourier-transformed. The diagonalization of
the dynamical matrix yielded the phonon frequencies at different wave vectors (q-points). No
longitudinal or transverse optical splitting (LO/TO) was applied.

4.2.2 Monte Carlo Simulations

Metropolis Monte Carlo

MMC simulations were performed in a 12 × 12 × 12 supercell with 20736 ions or vacancies and
periodic boundary conditions. The lattice configuration energy Econf was calculated according to
a pair interaction model with the number of interactions N i and the distance i based on DFT
calculations of the RE-RE, RE-V and V-V association energy ∆Ei:

Econf =
∑
i

N i
RE-RE ·∆EiRE-RE +

∑
i

N i
RE-V ·∆EiRE-V +

∑
i

N i
V-V ·∆EiV-V (4.15)

where association energies up to 1NN RE-RE, 2NN RE-V and 4NN V-V in the model 2014 (cut-off ra-
dius 5.5 Å with neglected 2NN RE-RE interaction) [55] or 2NN RE-RE, 2NN RE-V and 4NN V-V in the
model 2015 (cut-off radius 5.5 Å) are used. The models and used parameters are discussed in Chap-
ter 5.1. Coordination numbers from MMC simulations are averaged over 20 individual simulations
each with additional 5 · 105 Monte Carlo steps after reaching equilibrium.

Three different lattice types are created: In a RND lattice the cation sublattice is randomly
ordered (or equilibrated at infinite temperature T1 = inf) while the anion sublattice is in ther-
modynamic equilibrium at the investigated temperature T2. This type of lattice is commonly used
in KMC simulations in literature and this work. [220,225,281,282,286,287,371–373] In an EQ lattice, both
sublattices are equilibrated at 2/3 of the ceria melting point (T1 = 1500 K) similar to the sintering
process in experiments. At lower temperatures, the cations are frozen due to their low mobility and
the anions are equilibrated at T2. In a DEG lattice, both sublattices are equilibrated at the final
investigated temperature T1 = T2, simulating a degraded lattice, which had a very long time to
reach thermodynamic equilibrium.

All MMC simulations were performed by Steffen Grieshammer. [374]

Kinetic Monte Carlo

KMC Simulations were performed using the software iCon developed by Philipp Hein and Benjamin
Grope [287] according to an earlier work [55] in a 16× 16× 16 supercell with 49152 ions or vacancies
and periodic boundary conditions.

Random lattice configurations were used. Anion sublattices were at first equilibrated by 100 Monte
Carlo Steps per particle. For low temperatures, lattices were employed, which were equilibrated at
higher temperature, and subsequently only 10 Monte Carlo Steps per particle for equilibration were
used. For the investigation of degradation effects, lattices were equilibrated using MMC simulations.
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4 Experimental and Computational Details

An electric field strength of 0.1 kB was used, which had no influence on the thermodynamic
equilibrium according to an earlier work. [55] Dynamical scaling was activated for temperature below
500 °C where up to 10−5 % of the most probable jumps from a sampling size of 5 · 109 where always
accepted. Tests confirm no influence of the dynamical scaling on the ionic conductivity.

Simulations of the ionic conductivity were repeated at least ten times each with 100 Monte Carlo
Steps per particle. The standard error on the conductivity results primarily from the use of different
starting lattices.

The calculation of the migration energy Emig is described in Chapter 7. Two models are presented
in which association energies up to 2NN RE-V and 3NN V-V in the model 2014 (cut-off radius 4.7 Å) [55]

and 2NN RE-V and 4NN V-V in the model 2015 (cut-off radius 5.5 Å) are used.
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5 Defect Interactions and Local
Structures

In this chapter, defect interactions and association energies are calculated for doped ceria. Sub-
sequently, MMC simulations are employed to simulate the local structure. In addition, EXAFS
measurements are performed.

5.1 Defect Interactions and Association Energies
In DFT calculations, cells with isolated defect clusters as well as cells with experimental defect
concentrations were studied. Association energies should be investigated in infinite large cells, while
the validity of the pair interaction model can be investigated best at experimental defect concen-
trations. As the supercell size is limited due to large calculation times, defects interact with their
image in other cells. Therefore, association energies are calculated in different supercell sizes and
extrapolated to an infinitely large supercell.

5.1.1 Diluted Defects

RE-V Association Energy

In this work, the attractive 1NN and 2NN RE-V association energy was calculated in the 2 × 2 × 2
and 3 × 3 × 3 supercell in relation to the 3NN RE-V association energy (Fig. 5.1), according to
E1
RE-V = E(1NN) − E(3NN) and E2

RE-V = E(2NN) − E(3NN) where E(xNN) is the energy of the
supercell with a xNN RE-V distance. Using the finite size correction according to Makov and Payne
(Eq. 4.14), energies for an infinitely large supercell are obtained (‘inf’). Ionic radii are given according
to Shannon. [32]

Figure 5.1 shows a monotonous decrease of the absolute value of the 1NN RE-V association energy
with increasing dopant size (cp. Chapter 4.2.1). For the absolute value of the 2NN association energy,
a minimum for the Lu-V association compared to other dopants appears. Again, an energetically
preferred 1NN association is found for small dopants (e.g. Sc), while for the large dopant La the
absolute value of the 2NN RE-V association energy is larger, in agreement with literature. [44,54,55,224]

Yb3+ and Mn2+ show deviation from this behavior. However, Mn is not a rare-earth element and has
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Figure 5.1: RE-V interaction for different supercell sizes and ∆E3
RE-V = 0.

a different charge state. In addition, the used PAW-GGA-PBE potential for ytterbium is optimized
for Yb2+.

For small dopants, the absolute value of the association energy decreases for decreasing cubic
supercell sizes. Lu dopant and oxygen vacancies even repel each other on next nearest neighbor
position (2NN) in a 2× 2× 2 supercell. The Nd-V association energy is independent of the supercell
size. The absolute value of the La-V interaction energy increases for smaller cubic supercell sizes. All
these supercell size depended effects emphasis the need for extrapolation of the association energy
to an infinitely large supercell.

Lu3+ and Mn2+ have a similar ionic radius compared to Ce4+. Therefore, it could be assumed
that their strong association with oxygen vacancies is not caused by elastic contributions (local
distortions) but the Coulomb energy. In fact, for the 3×3×3 supercell, the 1NN Mn-V association is
twice as large as the 1NN Lu-V association. The absolute value of the 1NN Mn-V association energy
is 25% smaller than the absolute value of the calculated Coulomb energy. However, the 2NN Lu-V
association energy is nearly zero, while the absolute value of the 2NN Mn-V association energy is
less than half of the absolute value of the calculated Coulomb energy. Therefore, the above-stated
assumption fails, and the association energy is influenced by elastic contributions (local distortions).
Beyond that, the equivalent radii for Ce4+ and Lu3+ affect the association energy as the 2NN RE-V
association energy has a maximum for Lu.
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5.1 Defect Interactions and Association Energies

Termination and finite size correction Compared to the work of Nakayama and Martin, [54]

an own work shown in Chapter 4.2.1 and an improved work in cooperation with Steffen Griesham-
mer, [55] two major changes to the calculation of the association energy were made: termination and
finite size correction.

Firstly, the association energy strongly depends on the supercell sizes. As a result, the association
energy was extrapolated to an infinitely large supercell to avoid any size dependencies using finite
size correction. While Nakayama and Martin used a 2 × 2 × 2 supercell [54] and in Chapter 4.2.1
a 2 × 2 × 3 supercell was used, an infinitely large supercell was extrapolated in cooperation with
Steffen Grieshammer, [55] which is refereed to in the following as model 2014, as well as in this work,
which is refereed to in the following as model 2015. It should be noted that the extrapolations in
the models 2014 and 2015 are different: In model 2015 the extrapolation was performed using cubic
supercells (2 × 2 × 2 and 3 × 3 × 3), while for the model 2014 also non-cubic supercells were used,
which is not ideal.

The use of finite size correction leads to an almost constant shift in the association energy. This can
be seen in comparing the work of Nakayama and Martin [54] and Chapter 4.2.1 with the models 2014
and 2015. [55]

Secondly, the association energy is defined as the energy that is required to move two defects from
an infinite distance towards adjacent lattice sites. On the one hand, infinite distances necessary for
the so-called ‘infinite termination’ are difficult to calculate. On the other hand, association energies
are usually only calculated for a selected defects distance. Any further interactions are assumed to
be zero. Therefore, it seems obvious to use the first interaction, which is assumed to be zero (e.g. at
6 Å RE-V distance), directly as a reference for ‘termination at the first neglected interaction’.

To compare both types of termination, it may be assumed that the association energy is identical
to a fictive Coulomb energy according to Eq. 4.13. Adjacent defects, nearby defects and widely
separated defects are distinguished. While an adjacent defect is on a nearest neighborhood site
(1NN) or in close vicinity up to iNN, nearby defects are just outside of the considered interaction
radius on (i+1)NN. Here, for infinite termination, the energy difference between ionic configurations
with adjacent defects and widely separated defects is well defined. However, the energy difference
of nearby defects compared to adjacent defects just outside of the considered interaction radius is
too large. For a termination at the first neglected interaction, the latter is well defined. However,
the energy for widely separated defects is now assumed too low. Instead, their energy is equivalent
to adjacent defects.

Thus, both types of terminations keep the ranking of different configurations while for the ter-
mination at the first neglected interaction also the energies between defects just outside of the
considered interaction radius are well defined. The latter is of significant importance for KMC sim-
ulation. As for MMC simulation permutations across the whole lattice are possible, intuitively the
infinite termination might be better suited, which coincides with the classical definition of the as-
sociation energies. Nevertheless, MMC simulation of Y doped ceria using the termination at the
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first neglected interaction show a better agreement with experimental literature (see Chapter 5.2.1).
Both arguments support the use of the termination at the first neglected interaction in this work.
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Figure 5.2: RE-V interaction for the infinitely large supercell (left and right) or the 3×3×3 supercell
(right). For the former, association energies are extrapolated for either 2 × 2 × 2 and 3 × 3 × 3
supercells (model 2015) or variable supercell sizes (model 2014). [55] The RE-V interaction is
calculated relative to 3NN (model 2015) or infinite distances (model 2014).

The use of infinite termination or termination at the first neglected interaction leads to an almost
constant shift of 0.1 eV as shown in Fig. 5.2 (left). Here, the model 2014, [55] which uses the infinite
termination, and model 2015, which uses the termination at the first neglected interaction, are
compared.

In addition, Steffen Grieshammer calculated association energies by DFT calculations with ex-
perimental dopant concentrations and found for Y and Sm doped ceria similar RE-V association
energies as for the model 2015. [374]

Figure 5.2 (right) illustrates the difference between both models as a function of defect distance.
The energy difference between 1NN and 2NN is similar for both models, while all other energy dif-
ferences deviate. In the further course of this work, the model 2015, which is based on a limited
amount of extrapolated energies, is compared to DFT calculations in the 3 × 3 × 3 supercell for
each individual configuration, as larger supercells are computationally too expensive. Surprisingly,
the association energy of Sm doped ceria does not behave monotonously like the Coulomb energy.
The agreement between DFT energies and the model 2015 supports the use of the termination at
the first neglected interaction.

Comparisons with other theoretical studies show a strong influence of used method, supercell size
and termination on the association energy. [39,40,44,223,224,231,275,350] As a result, both positive and
negative RE-V association energies were calculated, and the transition between energy-favorable 1NN

or 2NN appears at different dopant radii. For example, Dholabhai et al. predicted an energy-favorable
2NN Pr-V interaction, [224,275,350] while Andersson et al. already found similar association energies
for 1NN and 2NN Pm-V (Fig. 5.3). [44]
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Figure 5.3: RE-V association energy in comparison with other theoretical studies. [44,224,275,350] For
Dholabhai et al. a termination at 3NN is assumed.

Experimental values The large absolute value of the association energy for Sc is in agreement
with its low experimental solubility. [66,207] MMC calculations confirm phase separations for larger
dopant fractions caused by strong association. [55]

The experimental values as discussed in Chapter 2.5.2 are defined as positive values and confirm
a strong association of Sc doped ceria. Likewise, a stronger association of Y compared to Gd or
Y compared to La is measured. The range of experimental and calculated association energies is
similar. However, the smallest association is measured for Gd, in contrast to the calculated 1NN

association energies.

Though the experimental values scatter, and earlier considerations also consider the possibility of
extrapolating experimental values to infinite low concentrations, [55] a significant difference between
calculated 1NN association energies and experimental association energies is found. Consequently,
a direct comparison of calculated 1NN association energies with experiments might not be possible
as e.g. for La doped ceria, oxygen vacancies are also trapped in the 2NN position. The resulting
influence of several RE-V and additional V-V association energies can be properly compared with
impedance experiments by calculating the temperature-dependent ionic conductivity using KMC
simulations. Results will be presented in Chapter 6, 7 and 8.
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V-V Association Energy

For the repulsive interaction of two oxygen vacancies (Fig. 5.4), a fast decrease in the positive
association energy is found between the 1NN and 2NN interaction (Fig. 5.5). Further interactions are
similar up to the 5NN V-V interaction, which is considerably small and will, therefore, be neglected in
the following. For the 3NN V-V interaction, there are two possible geometries, one without (3NNa) and
one with a cation between the oxygen vacancies (3NNb). Both show significantly different association
energies, though this difference decreases with increasing supercell size.

Figure 5.4: V-V interaction lattice sites. Cerium ions are green spheres, oxygen ions are red spheres
and oxygen vacancies are red cubes.

The 1NN V-V interaction energy is independent of the supercell size. For other V-V distances,
increasing the supercell sizes leads to both lower and higher association energies, probably due to
different shielding effects of the surrounding cations.

Nakayama and Martin [54] found a smaller 1NN V-V association energy (0.77 eV), not because
of the missing finite-size correction as suggested earlier, [55] but because of the missing Hubbard U
parameter and the different termination.

Compared to the model 2014, which was calculated similar as described for the RE-V interaction
above, a nearly constant energy shift of 0.05–0.1 eV to lower energies for the model 2015 was found.
Again, the main reason is the termination at the first neglected interaction additionally to the new
extrapolation method (Fig. 5.6). [55]

Steffen Grieshammer calculated association energies based on DFT calculations with experimental
dopant concentrations and found for Y and Sm doped ceria similar V-V association energies as for
the model 2015 with the exception of the 3NN V-V configuration with an intermediary cation. [374]

Furthermore, the results are in agreement with Ismail et al., who also found a rapid decrease
in the V-V repulsion after the first shell, similar energies for 2NN to 4NN and a negligible 5NN V-V
interaction. [375]
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Figure 5.5: V-V interaction for different supercell sizes.
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Figure 5.6: V-V interaction extrapolated for 2×2×2 and 3×3×3 supercells (model 2015) or variable
supercell sizes (model 2014). [55] The V-V interaction is calculated relative to 5NN (model 2015)
or infinite distances (model 2014).
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5.1.2 High Defect Concentrations
Until now, only the association of two defects was investigated. The association energy models are
pair interaction models were energies of multiple defects are just summed up and therefore linearly
scaled.

For three defects, DFT calculations of a 3× 3× 3 supercell with two Sm dopants and one oxygen
vacancy (Fig. 5.7), in accordance with Eq. 2.1, confirm the validity of the pair interaction model
as already found by Nakayama and Martin. [54] The energy differences between 1NN and either 2NN,
4NN or 5NN Sm-V interaction nearly doubles for an additional Sm dopant with deviations less than
0.005 eV.Therefore, the introduction of triplet interactions can be dispensed.
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Figure 5.7: Sm-V association energy difference between xNN and 1NN for one oxygen vacancy and
either one or two Sm dopants.

For higher defect concentration similar to experimentally used materials, MMC simulations in
a 3 × 3 × 3 supercell were performed by Steffen Grieshammer for this work to determine typical
ionic configurations for Ce1−xSmxO2−x/2 with x = 0.05, 0.1 and 0.15. Subsequently, in this work,
the energy of the supercell was determined using DFT calculations. Typical jump configurations
were identified, and jumps were performed using again DFT calculations. The difference between
initial and final state of an oxygen ion jump gives an association energy difference, which is crucial
to investigating diffusion in doped ceria. Comparing the DFT association energy differences with
a pair interaction model with the above-calculated energies for dilute defects, helps to validate the
use of both an additive model with linear scaling (pair interaction model) and the used association
energies.

In total, 450 association energy differences were investigated. Figure 5.8 shows a good agreement
between model and DFT association energy differences, especially for low defect concentrations.
With increasing dopant fractions, the standard deviation σs increases with 0.09, 0.12 and 0.15 for
x = 0.05, 0.1 and 0.15, receptively. For all dopant fractions σs is totally 0.13. The good agreement
validates that a pair interaction model with non-interacting cation and anion sublattice can be used.
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Figure 5.8: Model and DFT association energies with intuitive parameters. The jumping oxygen

vacancy interacts with both dopants and vacancies. Both sublattices interact. Association ener-
gies around the moving oxygen vacancy up to 2NN RE-V and 4NN V-V (5.41 Å) are added up.
Intuitive parameters are chosen for the extrapolated supercell according to Chapter 7.2 with the
termination Eass(3NN RE-V) = 0 and Eass(5NN V-V) = 0. Sm doped ceria in 3× 3× 3 supercell.
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5.2 Local Structure
The calculated association energies can be used to simulate the local structure in doped ceria us-
ing MMC simulations. The results are compared with EXAFS measurements of the coordination
numbers of the cations in Y, Gd and Sm doped ceria.

5.2.1 Metropolis Monte Carlo Simulations

MMC simulations were performed with association energies according to the models 2014 [55] and
2015. For the model 2015, a similar RE-RE interaction for all dopants based on 1NN and 2NN Sm-Sm
was assumed for all dopants. MMC simulations were performed by Steffen Grieshammer using a
randomly distributed cation sublattice. While generally in this work the standard deviation is used
as an error, for the MMC simulations the standard error of the mean is shown as an error, which is
the standard deviation divided by the square root of the numbers of independent simulations.
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Figure 5.9: Coordination numbers according to NMR [210–212] and XRD experiments [376] for Y doped
ceria (left) and according to XRD experiments [377,378] for Gd doped ceria (right). For Gd doped
ceria, Bevan et al. sintered the samples at 1600 °C and Nakamura et al. at 1450 °C. Additionally,
MMC simulations according to the models 2014 [55] and 2015 are shown.

For a random distribution of defects, the (average) coordination number is CN = 8 − 2 · x. The
oxygen vacancy concentration increases for increasing dopant fractions leading to a lower coordina-
tion number for the first shell of both the Ce4+ and RE3+ ions. The coordination number is identical
for both cations. A random distribution will emerge at very high temperatures.

For Y, Gd and Sm doped ceria at room temperature (Fig. 5.9 and 5.10) all Ce4+ coordina-
tion numbers are larger and all RE3+ coordination numbers are smaller than those in a random
distribution. This indicates an association of oxygen vacancies with rare-earth dopants.

As the absolute value of the 1NN RE-V association energy decreases with increasing ionic radius
of the dopant, the MMC simulations show a decreased association with increasing ionic radius
(Fig. 5.10).
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Coordination numbers for the model 2015 are larger (Ce4+) or smaller (RE3+) than for the
model 2014, which suggests a stronger association of oxygen vacancies with dopants in the model
2015. Exceptions to this behavior can be found for very small dopant concentrations. The stronger
association for the model 2015 is surprising, as the RE-V association energies are less negative
suggesting a decline in association.

Possible reasons for the stronger association are the smaller 1NN RE-RE association (0.1→0.04 eV),
the introduction of a 2NN RE-RE association (0→0.02 eV) or a by 0.05–0.1 eV smaller V-V associa-
tion.

Due to the decreasing 1NN RE-RE repulsion from the model 2014 to 2015, about 10% more
configurations with dopants in 1NN position appear. For these 1NN RE-RE pairs, an oxygen vacancy
probably appears in 1NN position to both dopants due to the combined attraction of both dopants.
This leads to a significant decrease in the RE-O coordination number and an increase in the Ce-O
coordination number. This strong effect is surprising, as the RE-RE repulsion is only considered at
1500 K, where the high temperature favors the entropic influence of the number of possible lattices
sites rather than the RE-RE repulsion energy, while the lattice is relaxed afterwards at 300 K using
only the RE-V and V-V association.

The V-V repulsion decreases from model 2014 to 2015, however, less than the RE-V association.
The number of V-V pairs (in 2NN, 3NN and 4NN) for the model 2015 is smaller than those according
to the model 2014. This suggests a stronger V-V repulsion in the model 2015. Generally, it is
assumed that a strong V-V repulsion prevents two oxygen vacancies to approach a single dopant in
nearest neighborhood. In case the V-V repulsion is neglected in MMC simulations, a very strong
RE-V association is found. [374] However, also a strong V-V repulsion might increase the association:
In case of the above-described (RE-V-RE) triplet, a strong V-V repulsion repels a second oxygen
vacancy, which subsequently might search for another dopant pair in 1NN position. This might
decrease the RE-O coordination number and increase the Ce-O coordination number.

For low dopant fractions, coordination numbers according to the model 2014 indicate a stronger
RE-V association than the model 2015, especially for Sm doped ceria. However, for lightly doped
ceria, even more 1NN Sm-Sm pairs exist in the model 2015 (more than twice as much) than in the
model 2014. Due to the low oxygen vacancy concentration, nearly no V-V pairs exist. Therefore, for
low dopant fractions, the above-described interpretation fails. It may be noted that the strong devia-
tions between both models for Sm doped ceria are a result of the low Sm-V association. Additionally,
the coordination numbers of lightly Sm doped ceria show significantly lower RE-V association than
Y and Gd doped ceria though the deviation in RE-V association energy is similar between Y and
Gd or Gd and Sm. This clearly shows competing effects between the RE-V association and the V-V
or RE-RE repulsion, which do not lead to soft transitions between coordination numbers.

Steffen Grieshammer calculated association energies based on DFT calculations with experimental
dopant concentrations and found for Y and Sm doped ceria similar MMC coordination numbers as
for the model 2015. [374]
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For Y doped ceria (Fig. 5.9), coordination number according to NMR [210–212] and XRD experi-
ments [376] are in agreement with both MMC models.

For Sm doped ceria (Fig. 5.10), XRD experiments [376] are in better agreement with the MMC
simulations for the model 2014 rather than for the model 2015.

For Gd doped ceria (Fig. 5.9), coordination numbers were extracted from XRD experiments by
Bevan et al. and Nakamura et al. [377,378] According to Nakamura, the main difference between
both experimental investigations is the sintering temperature. Bevan et al. sintered their samples at
1600 °C and Nakamura et al. at 1450 °C. Surprisingly, the MMC simulations according to the model
2014 fit well to the values of Bevan et al., while the model 2015 fits to the values of Nakamura et
al. For this reason, there is experimental evidence for both models.
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Figure 5.10: Coordination numbers for Sm doped ceria (left) according to XRD experiments [376] and
MMC simulations for the models 2014 [55] and 2015 are shown. Additionally, MMC simulations
for Y, Gd and Sm doped ceria according to the model 2015 are compared (right).

5.2.2 Coordination Numbers in EXAFS Experiments

Experimentally, the local structure was investigated in this work using EXAFS. In literature, doped
ceria has already been studied using XANES [379] and EXAFS [206–209,230,380–383]. Y doped ceria
has been investigated for dopant fractions of x = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. However,
Sm doped ceria, which possesses a significantly higher conductivity, has only been investigated for
dopant fractions of x = 0.1, 0.2, and 0.3. In this work, significantly smaller doping increments are
used (0.025), and the method of calculating the coordination number has been improved.

Sm doped ceria, Ce-edge

As shown in Chapter 4.1.4, a Radial Distribution Function can be extracted from the EXAFS
oscillation. For the Ce-edge in Sm doped ceria, the extracted Radial Distribution Function before
phase-shift correction is shown in Fig. 5.11.
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Figure 5.11: Radial Distribution Function at Ce(K)-edge of Ce1−xSmxO2−x/2.

The Radial Distribution Function shows contributions of oxygen ions or vacancies (first peak) as
well as cerium ions or Sm dopants (second peak). The amplitude fluctuates for the first coordination
shell. For the second coordination shell, the amplitude decreases with increasing dopant fraction
and changes its shape. Similar observations were made previously. [230,236,382,383] For Y, Gd and La
doped ceria, even a decrease for the amplitude of the first peak with increasing dopant fraction up
to x = 0.25 was found. [206,207,209]

Compared to pure ceria, doping with Sm leads to smaller amplitudes due to a decrease in coor-
dination number and an increase in structural disorder. For the first peak, especially a decrease in
coordination number is expected. In this work, however, only a fluctuation of the amplitude can be
observed. For the second peak, an increasing amount of Sm dopants clearly leads to a lower backscat-
tering. The Debye-Waller factor decreases due to the disorder of the cation sublattice caused by the
cation substitution. The increasing disorder also contributes to the broadening of the second peak.

Additionally, differences in interatomic distance can be observed. The maximum of the first co-
ordination peak (oxygen ions and vacancies) moves to lower R values for higher dopant fractions.
The second peak broadens and rather moves to larger R values for higher dopant fractions. Sim-
ilar observations were made up to x = 0.2 in literature, though the position of the second peak
varies. [206,207,209,230,236,382,383] An exception is the result of Yamazaki et al. [207] They show in the
Radial Distribution Function for the maximum of the first peak an increasing R value with increas-
ing dopant fraction, though they report decreasing Ce-O distances. [207] The reason for this deviation
is the missing phase-shift correction for the shown Radial Distribution Function. This emphasizes
the importance of modeling according to the EXAFS equation.

Decreasing Ce-O distances correlate with the expected decrease in coordination number. In other
words, oxygen ions near cations relax towards adjacent vacancies leading to decreasing cation-anion
distances. Especially the position of the second peak is influenced by the change in lattice parameter
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(Fig. 2.3). As the distances between Ce-Ce and Ce-RE differ, a broadening of the second peak is
observed as shown by Deguchi et al. [209]

Afterwards, the Radial Distribution Function is modeled using the EXAFS equation (Chap-
ter 4.1.4). The results are shown in Table 9.1 in the appendix. To investigate the local structure, the
first coordination shell around a cation was chosen. Here, oxygen ions or vacancies are present. The
occupation of the first coordination shell or the coordination number of cations shows the formation
of Ce-V or Sm-V associates in nearest neighborhood.
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Figure 5.12: Coordination number of Ce-O for Sm doped ceria. XRD experiments according to
Nakamura. [376] MMC simulations according to an earlier work. [55]

The coordination number can directly be extracted from the EXAFS equation from the amplitude.
For the amplitude, the coordination number is CNi = 8 · ampi

amp(CeO2) .

The coordination number is equivalent to the number of neighboring atoms N , which is fitted
here with the amplitude. However, the amplitude depends strongly on the EXAFS Data Processing
and has a great error, which can be seen in Fig. 5.12.

Alternatively, the determination of the coordination number can be improved by using the dis-
tance to the neighboring atoms R. Shannon has shown that the ionic radius depends on the co-
ordination number. [32] According to Shannon, the distance between cation and anion lattice sites
decreases for an increasing number of vacant anion lattice sites (or for a lower coordination num-
ber). Therefore, a coordination number can be calculated from the distance to the neighboring atom
(Fig. 5.12).

For the distance, the coordination number is CNi = 6 + 2 · ri−rCN=8

rCN=8−rCN=6 ,
with the distances rCN=6 and rCN=8 given by Shannon, [32] which are shifted to the Ce-O distance
according to XRD measurements in pure ceria. [25] For the latter, CN = 6 is the only investigated
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coordination number smaller than CN = 8. In this simple model, a mixture of the two isotropic
coordination states is assumed. The error of the coordination number based on the distances is
significantly smaller than for the amplitude. Comparing both types of coordination numbers suggests
that the error based on the EXAFS fitting procedure is smaller than the actual systematic error of
the data, especially for the amplitude data.

Using the amplitude in the EXAFS equation leads to a very bad approximation of the Ce-O
coordination number: The error of the coordination numbers is large. Ce-O coordination numbers
are significantly lower than predicted by a random cation distribution. This would mean that oxygen
vacancies do not associate with rare-earth dopants but appear near cerium ions. While this might
be a reason for further investigations, in fact, the Ce-O coordination numbers are lower than even
physically possible as determined by the oxygen vacancy concentration. Using the distance leads
to a significantly better coordination number in the range of both random distribution and MMC
simulation. The Ce-O coordination number generally decreases with increasing dopant fraction as
shown previously. [206,207,209] However, the error is still much larger than the difference between
random distribution and MMC simulation, suggesting that EXAFS may be not the best method to
determine coordination numbers for different samples.

Sm doped ceria, Sm-edge

For the Sm(LI)-edge in Sm doped ceria (Fig. 5.13), the signal-to-noise ratio of the normalized
absorption coefficient is not as good as shown for the Ce-edge. The reason for the comparably bad
signal-to-noise ratio is the smaller dopant concentration at similar measuring times. Obviously, this
results in a Radial Distribution Function with strong scattering (see Fig. 5.14).
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Figure 5.13: Normalized X-Ray Absorption near the Sm(K)-edge (XANES) of Ce1−xSmxO2−x/2.

For the extracted Radial Distribution Function, again the position of the first coordination peak,
which represents oxygen ions and vacancies, moves to lower R values for higher dopant fractions.
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Figure 5.14: Radial Distribution Function at Sm(K)-edge of Ce1−xSmxO2−x/2.

Here, an exception is found for x = 0.125. The amplitude of the Radial Distribution Function χ (R)
varies.

The coordination number based on the EXAFS equation shows strong scattering for both the
amplitude and distance method (Fig. 5.15). The coordination numbers according to the distance
method are significantly lower compared to XRD results, random distribution and Metropolis Monte
Carlo (MMC) simulations and are therefore probably not valid.
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Figure 5.15: Coordination number of Sm-O for Sm doped ceria. XRD experiments according to
Nakamura. [376] MMC simulations according to an earlier work. [55]
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RE doped ceria

For 20 mol% Y, Gd and Sm doped ceria, MMC simulations predict a decrease in the Ce-O co-
ordination number and an increase in the RE-O coordination number with increasing ionic radii
(Fig. 5.10). The reason for this is the decreasing association between dopants and oxygen vacancies
mainly due to the decreasing absolute value of the 1NN RE-V association energy. In experiments,
this would lead to a decreasing amplitude or decreasing interatomic distance for the Ce-edge in the
series Y, Gd and Sm doped ceria. For the RE-edge, the opposite is expected.

In literature, this behavior of association was found, [208] although disagreeing results exist where
large dopants lead either to weaker [207] or stronger [209,230] associations. Yoshida et al. even propose
to use the difference of the Ce-O and RE-O coordination numbers. [230]

In this work, again the data quality was not sufficient. For the Ce-edge, the first peak, which is
influenced by oxygen ions and vacancies, is nearly independent of the dopant ion (see Fig. 9.2 in
appendix).

For the RE-edge, an increase in the amplitude of the first peak in the series Y, Gd and Sm
doped ceria due to decreasing association is found as expected (see Fig. 9.3 in appendix). However,
the large difference in amplitude and an unexpected behavior of the interatomic distance indicate
problems with the data quality. These problems manifest even more clearly in the second peak.

Conclusion

The coordination numbers were successfully simulated in agreement with XRD measurements. While
the accuracy of the coordination numbers from EXAFS experiments especially for the Ce-edge in
Sm doped ceria was improved compared to studies considering only the amplitude of the Radial
Distribution Function, measurements of the Sm-edge or other rare-earth dopants did not provide
the desired quality of data. The Sm-V association was verified for the Ce-edge in Sm doped ceria.

81





6 Attempt Frequency

The ionic conductivity can be simulated from the microscopic attempt frequencies and migration
energies for the distribution of different ionic configurations. The ab initio calculation of attempt
frequencies is described in this chapter, the calculation of the migration energies is described in
Chapter 7 and ionic conductivities are discussed in Chapter 8.

The attempt frequency for an oxygen ion jump was calculated from first principles combining
DFT+U, NEB, phonon calculations and the transition state theory. Convergence checks of the
phonon mesh reveal that the common reduction to the Gamma point is not sufficient to calculate
the attempt frequency. Calculations of Sm doped ceria revealed an increase of the prefactor, while
smaller dopants lead to an decrease of the prefactor. The attempt frequency for the constant pressure
case in quasi-harmonic approximation is larger than the attempt frequency at constant volume in
harmonic approximation.

While ab initio calculations generally investigate microscopic properties, at the same time the
macroscopic conductivity can be fitted to an Arrhenius equation (Eqs. 2.3 and 2.4) to extract an
experimental attempt frequency and activation enthalpy. These properties can be directly compared
between simulations and experiments. The relation between microscopic and macroscopic proper-
ties is investigated in this chapter. The calculated electronic energies, enthalpies and entropies of
migration are in agreement with experimental diffusion coefficients and activation energies.

The ionic conductivity in ceria can be simulated by means of molecular dynamics (MD) us-
ing pair potentials [384–389] or by Kinetic Monte Carlo simulations using empirical [41] or ab initio
data [50,54,225,371,372] for the activation barrier (migration energy) for each occurring jump. In all
these KMC studies ‘a typical value’ (mostly 1013 s−1) for the attempt frequency for all ionic config-
urations was applied. For praseodymium doped ceria, Dholabhai et al. calculated the attempt fre-
quency by means of DFT with a Hubbard U parameter (DFT+U ) resulting in 5 ·1012 s−1 for one of
many possible ionic configurations. [284] However, a Vineyard approximation was applied considering
only the Gamma point phonons. As mentioned before, it was assumed that the attempt frequency
is constant for different configurations. Attempt frequencies for different ionic configurations are
rarely calculated. Tarancón et al. used classical molecular dynamics (MD) to indirectly calculate
attempt frequencies for Ce0.92Gd0.08O1.96 resulting in (5.4± 0.3) · 1012 s−1 for jumps through an
edge formed either by two host cations (Ce-Ce edge, see Fig. 6.1) or one dopant and one host cation
(Ce-Gd edge). [387]
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In this work, the migration of oxygen vacancies in fluorite-structured ceria is considered be-
tween adjacent tetrahedral oxygen sites [54] in (100) direction with the experimental jump distance
l = 2.7055 Å given by half of the unit cell length at room temperature. [25] Along this migration
pathway, two cations form a ‘migration edge’. In pure CeO2, only cerium ions are at the migration
edge, while doping with samarium oxide leads to configurations with one or two Sm ions at the
migration edge (see Fig. 6.1). Jumps through a Ce-Ce, Ce-Sm or Sm-Sm edge were explicitly calcu-
lated in this work. For KMC simulations, the migration energies and the attempt frequencies must
be known for all occurring configurations containing multiple Sm dopants and oxygen vacancies at
various positions. The migration energies of all possible configurations can be calculated combin-
ing three explicit migration edge energies with association energies between the migrating oxygen
vacancy and the other adjacent defects according to a pair interaction model proposed earlier. [55]

The attempt frequencies of the three edge configurations are assumed to be representative for all
possible migration configurations.

Figure 6.1: Possible migration edge configurations in samarium doped ceria. Ce-Ce edge (left), Ce-
Sm edge (middle) and Sm-Sm edge (right). Cerium ions (green), samarium ions (blue), oxygen
ions (red spheres) and oxygen vacancies (red boxes).

6.1 Calculation of the Attempt Frequency:

Doping at the Migration Edge
Phonon dispersions for the initial and the transition state of the migration (see Eq. 2.9) showed
minor contributions of imaginary frequencies at some q-points (cp. Chapter 2.3.4) in the vicinity of
the Gamma point that had to be taken into account (see Fig. 6.2, imaginary frequencies are shown as
negative frequencies). The number of imaginary acoustic branches, which often depend on the chosen
exchange-correlation-functional and the supercell size, varies between initial and transition state.
For this reason, occurring imaginary parts were disregarded symmetrically in initial and transition
state as the resulting error is assumed to be small. In general, imaginary frequencies suggest an
unstable structure leading to deformations along the associated phonon wave vectors. However, for
some q-point samplings the occurring imaginary frequencies may be caused by non-cubic supercells,
or, as shown by Grabowski et al., [147,390] not fully converged parameters. The latter can probably
be neglected since the results by Grabowski et al. suggest that the k-point mesh and supercell size
are converged in this work. [147,345] Furthermore, the supercell volume was doubled compared to
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previous phonon calculations. [50]
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Figure 6.2: Phonon dispersions of the initial state V••O1 − O×O2 (left, space group P4m2) and the
transition state V••O1 −O

′′

TS −V••O2 (right, space group Pmmm) in ceria according to Eq. 2.9.

Figure 6.3 shows the vibrational free energy difference ∆Fvib (Eq. 2.19) and its components,
the vibrational energy difference ∆Evib and entropy difference of initial and transition state ∆Svib,
according to Eq. 2.11 in ceria in harmonic approximation for a 6 × 6 × 6 phonon mesh. As previ-
ously mentioned, the vibrational energy difference is similar to −kBT as it differs less than 5% for
temperatures above 900 K.
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Figure 6.3: Vibrational free energy difference ∆Fvib, vibrational energy difference ∆Evib and entropy
difference ∆Svib of initial and transition state in ceria in harmonic approximation for a 6× 6× 6
phonon mesh. For comparison −kBT is shown, which is similar to ∆Evib.
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6.1.1 Pure Ceria: Influence of the Phonon Mesh
The attempt frequency was calculated using the Eyring method [109] (Eq. 2.10) with Eq. 2.19 and the
in this work presented generalized Vineyard [110] method (Eq. 2.22) with different q-point mesh sizes.
The attempt frequency rises to a plateau with increasing temperature (Fig. 6.4). Above 600 K, both
the Eyring and the generalized Vineyard method lead to similar attempt frequencies as predicted by
theory. At 0 K the free vibrational energy difference between initial and transition state is 0.007 eV.
Some authors move this zero point energy contribution of the attempt frequency (ZPE) to the
migration energy leading to another definition of the attempt frequency, which is larger especially
at low temperatures. [103,154,391,392] For the calculation of the phonon dispersion, an equidistantly
spaced q-point mesh of dimensions between 1 × 1 × 1 and 6 × 6 × 6 was applied to sample the
phonon dispersion, since the number of all possible discrete wave vectors is too large (Eq. 2.18). It
can be clearly seen that the common reduction to the Gamma point (1 × 1 × 1) is not sufficient
to calculate the attempt frequency. The convergence of the phonon mesh is reached only above 64
q-points corresponding to a 4×4×4 grid. The resulting attempt frequency in pure ceria 1.5 ·1012 s−1

is in the range of the usually assumed values (1012 − 1013 s−1).
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Figure 6.4: Oxygen vacancy attempt frequency ν0 in ceria in harmonic approximation for different
phonon mesh sizes. Lines are calculated using the Eyring method, squares are the results of
the generalized Vineyard formula (Eq. 2.22). The dashed line shows the result according to the
Eyring method without zero point energy (ZPE).

6.1.2 Sm Doped Ceria
The influence of doping with Sm on the attempt frequency was investigated. Therefore, one or two
samarium dopants were introduced at the migration edge (see Fig. 6.1) between two edge-sharing
tetrahedra. A convergence of the resulting attempt frequencies as a function of the used phonon
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mesh was observed, similar to pure ceria, while the approximation of the attempt frequency based
on Gamma point calculations was even worse. All further results correspond to the 6×6×6 phonon
mesh. The results are shown in Table 6.1. The following can be observed:

One samarium dopant does not influence the attempt frequency. Two
samarium dopants increase the attempt frequency by a factor of three.

The increase in attempt frequency for the Sm-Sm edge compared to pure ceria is expected due
to the higher activation barrier and steeper electronic energy curvature. For the Ce-Sm edge, the
migrating oxygen ion deviates from the direct, straight path found for the Ce-Ce and the Sm-Sm edge
between initial and final position. The migrating oxygen ion follows a curved path by avoiding the
steeper electronic energy curvature and a high attempt frequency. Surprisingly, this leads to similar
attempt frequencies for one Sm dopant and pure ceria. The resulting attempt frequencies for the
Ce-Ce and Ce-Sm edge are in agreement with literature in which a constant attempt frequency for
different configurations is either assumed [284] or calculated for both the Ce-Ce and Ce-Gd edge. [387]

Here, Tarancón et al. did not consider the Gd-Gd edge due to “the negligible impact on the final
diffusion properties”.

A key property for the interaction between the edge cations and the migrating oxygen ion are
the distances of the edge cations in the transition state dTS and the initial state dIS (see Table 6.1).
The migration energies ∆E0

el of the different edge configurations depend linearly on the difference of
the distances of the edge cations between transition and initial state, dTS − dIS. Simply described,
the cations at the edge must be pushed apart during an oxygen ion jump. This leads to a linear
relationship between the widening of the edge cations and the migration energy. Likewise, the
attempt frequency is majorly influenced by the edge cation distance in the transition state dTS. For
the Ce-Ce and Ce-Sm edge ν0 and dTS are similar, respectively. Both values increase significantly
for the Sm-Sm edge.

migration dIS dTS dTS − dIS ∆E0
el (V,T ) ν0 (V,T )

edge (Å) (Å) (Å) (eV) (s−1)
Ce-Ce 4.148 4.267 0.119 0.587 1.47 · 1012

Ce-Sm 4.142 4.268 0.126 0.759 1.49 · 1012

Sm-Sm 4.141 4.280 0.139 1.166 4.30 · 1012

Table 6.1: Electronic migration energies for different migration configurations (Eq. 2.10), distances
of the edge cations in the initial and the transition state and oxygen vacancy attempt frequencies
ν0 (V,T ) (Vineyard, Eq. 2.22) at constant volume (V = const.)

For further investigation and in consideration of the very time-consuming phonon calculations,
the attempt frequency could be described in a simple approximation by displacing the migrating
oxygen ion in the initial state. Using the classical harmonic oscillator with the displacement x and
the electronic energy E0

el = 1
2kx

2 + E0
el,x=0 the attempt frequency can be calculated according to
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ν0 =
√
k/m

2π with the mass m of the migrating oxygen ion. In this simplified case, it is assumed
that all neighboring atoms are frozen similar to the Einstein model (one body problem), a classical
model can be used and only the initial state has an influence on the attempt frequency. This simple
static displacement model leads to similar attempt frequencies for all three edge configurations
(Fig. 6.1) with a slight increase for more Sm dopants from 8.42 ·1012 to 9.74 ·1012 s−1 (see Fig. 6.7).
Analogous bulk calculations without any oxygen vacancy lead to a frequency of 11 · 1012 s−1. The
attempt frequencies according to the static displacement model are higher than the values from the
phonon calculations indicating a hard potential around the initial state. As described, the phonon
calculations revealed an exceptionally high attempt frequency for the Sm-Sm edge. This deviation
from the static displacement result indicates a strong influence of the neighboring atoms for the
Sm-Sm edge as established above.

6.1.3 Gd and Yb Doped Ceria
For Gd and Yb doped ceria, the attempt frequency was calculated as a function of dopants at the
migration edge. While for Sm doped ceria the attempt frequency increases linear with the distance
of the edge cations in the transition state, this simple relationship between geometry and attempt
frequency fails for other dopants. Table 6.2, Fig. 6.5 and 6.6 show that smaller dopant radii lead to
lower attempt frequencies. This leads even to a decrease in attempt frequency for increasing number
of Yb dopants at the migration edge. Especially the decrease in attempt frequency (e.g. Ce-Yb,
Yb-Yb, Ce-Gd compared to Ce-Ce) for configurations with higher migration energies are contrary
to the assumption that higher barriers lead to steep potential energies landscapes in the initial state
and therefore to higher attempt frequencies.

migration dIS dTS dTS − dIS ∆E0
el (V,T ) ν0 (V,T )

edge (Å) (Å) (Å) (eV) (s−1)

Ce-Ce 4.148 4.267 0.119 0.587 1.47 · 1012

Ce-Gd 4.145 4.253 0.108 0.694 1.28 · 1012

Gd-Gd 4.148 4.244 0.096 1.015 2.31 · 1012

Ce-Yb 4.125 4.256 0.131 0.694 1.14 · 1012

Yb-Yb 4.235 4.473 0.238 0.705 0.97 · 1012

Table 6.2: Electronic migration energies for different migration configurations, distances of the edge
cations in the initial and the transition state and oxygen vacancy attempt frequencies ν0 (V,T )
(Vineyard) at constant volume (V = const.)

For different dopants at the migration edge, the correlation between attempt frequencies and
distances of edge cations in the transition state is quite bad. The same is true for the migration
energy as a function of widening of the edge cations from initial to transition state. For Yb doped
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ceria, this correlation may be masked by the used potential for Yb, which was optimized for Yb2+.

Figure 6.5(b) shows that both the edge cation distance in the transition state and the widening
increase for higher ionic radii for the Ce-RE and the RE-RE edge. Exceptions can be found for Yb
doped ceria, due to the used potential.
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Figure 6.5: Phonon calculations for pure and Sm, Gd and Yb doped ceria in harmonic approximation
calculated using the Vineyard method.

Figure 6.6 shows that both migration energy and attempt frequency increase with increasing
dopant radius for the Ce-RE and the RE-RE edge. This increase is steeper for the double-doped
migration edge. Therefore, for the individual edge configurations, a correlation between the attempt
frequency and the migration energy as a function of either the edge cations in the transition state or
the widening can be found. However, as both edge cations in the transition state and the widening
behave similarly, a clear assignment to either attempt frequency or migration energy cannot be
established.
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Figure 6.6: Migration energies (left) and attempt frequencies (right) in phonon supercells as a
function of dopant fraction.
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Large dopants lead to an increase and
small dopants to a decrease in attempt frequency.

6.1.4 Attempt Frequency at Constant Pressure

All phonon calculations were performed isochoric, i.e. for a constant volume that was derived for
bulk ceria at the absolute zero. This follows the harmonic approximation in which all calculations
are performed at a fixed equilibrium volume. To investigate the isobaric behavior, i.e. the constant
pressure case (p = 0), the quasi-harmonic approximation can be applied in which the minimum of
the free energy for different volumes is determined at given temperatures. Therefore, all properties
like the migration energy should be calculated at constant pressure (Eq. 2.15). The influence of the
change between constant volume and constant pressure case on the electronic migration energy at
zero temperature ∆E0

el is small (±0.015 eV), and the exponential factor varies below ±20% at 900 K
(compare Table 6.1 and 6.3). As phonon calculations are computationally demanding it is commonly
assumed that the change in vibrational entropy with changing volume,

(
∂Svib
∂V

)
T
, is similar in defect-

free bulk, the defective cell in the initial state and in the transition state. [393,394] Starting from the
equilibrium volume V0, the entropy of migration for p = 0 is given according to Grieshammer et
al. [50]

∆Svib (p,T ) = ∆Svib (V (p,T ) ,T )

= ∆Svib (V0,T ) +
∫ VIS(p,T )+∆V

VIS(p,T )

(
∂Svib
∂V

)bulk

T

dV

= ∆Svib (V0,T ) + αVBT ·∆V, (6.1)

with the change in volume between transition state and initial state at constant pressure
∆V = VTS (p = 0,T )− VIS (p = 0,T ) which is assumed to be independent of temperature. Al-
ternatively, the change in pressure between transition state and initial state at constant volume ∆p
can be used (see Eq. 6.2). The volumetric thermal expansion coefficient αV and the bulk modulus
BT for bulk ceria were already determined by Grieshammer et al. [50] The free vibrational energy of
migration ∆Fvib is defined by the vibrational energy ∆Evib and entropy ∆Svib (see Eq. 2.11). The
free vibrational energy of migration at zero pressure can then be written as

∆Fvib (p,T ) = ∆Fvib (V0,T )− T ·αVBT·∆V

= ∆Fvib (V0,T ) + T ·αVV ·∆p. (6.2)

Therewith the generalized Vineyard result (Eq. 2.22) can be modified: [395]

ν0 (p) =

∏
q,i

νq,i
1
M∏

m,j

νm,j
1
M

exp
(
αVBT∆V

kB

)
. (6.3)

90



6.1 Calculation of the Attempt Frequency: Doping at the Migration Edge

The same modification applies to the Eyring formula (Eq. 2.10):

ν0 (p,T ) = kBT

h
exp

(
−∆Fvib (V0,T )

kBT

)
×exp

(
αVBT∆V

kB

)
. (6.4)

migration ∆E0
el (p,T ) ∆V ν0 (p,T )

edge (eV) (Å3) (s−1)

Ce-Ce 0.602 3.06 7.67 · 1012

Ce-Sm 0.769 3.01 7.52 · 1012

Sm-Sm 1.162 2.64 1.79 · 1013

Table 6.3: Electronic migration energies for different migration configurations, changes in volume
between transition state and initial state ∆V and oxygen vacancy attempt frequencies ν0 (p,T )
(Vineyard) at constant pressure (p = 0) and 900 K

In Fig. 6.7 and 6.8, the attempt frequencies in samarium doped ceria for the relaxed cell volume
(p = 0) are shown. Now, the constant volume case can be compared with the constant pressure case:
The hydrostatic pressure for the constant volume case (V0) results in a volume compression for the
Ce-Ce, Ce-Sm edge and an expansion for the Sm-Sm edge for the constant pressure case for both
initial state [VIS (p,T )] and transition state [VTS (p,T )]. In the constant pressure case, the change in
volume between transition state and initial state ∆V is similar for the Ce-Ce and Ce-Sm edge and
slightly smaller for the Sm-Sm edge (see Table 6.3). The influence of αVBT∆V in Eq. 6.1 on the
attempt frequency is significant. Minor errors in αVBT are propagated exponentially in the attempt
frequency. Thus, the error of the attempt frequency is larger than 10% above 1500 K. The attempt
frequency at constant pressure increases compared to the constant volume case by a factor of about
five for the Ce-Ce and Ce-Sm edge and four for the Sm-Sm edge at 900 K.

The attempt frequency at constant pressure increases
compared to the constant volume case.

The resulting attempt frequencies are roughly in the range of the usually assumed values
(1012 – 1013 s−1) and similar to experimental Debye frequencies in ceria, which are between 8 · 1012

and 10 · 1012 s−1 according to ultrasonic pulse, specific heat and thermal expansion coefficient
measurements. [396–399] The experimental Debye frequencies νD were calculated from the Debye
temperature θD according to θD = (h/kB) νD = (2ha/πkB) (D/2µ)1/2 with the inverse width of the
Morse potential and the reduced mass of the oscillator µ. [399] For ceria, a rough estimate for the
Debye temperature is θD = 410 K [396] or 480 K [397]. Doped ceria Ce1–xRExO2–x/2 (RE = Yb, Dy,
Sm, La) has Debye temperatures around 467 K (x = 0.1) or 453 K (x = 0.2). [397]
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Figure 6.7: Oxygen vacancy attempt frequency ν0 in harmonic (squares) and quasi-harmonic ap-
proximation (circles) in samarium doped ceria with different number of dopants at the migration
edge, using the generalized Vineyard method at a temperature of 900 K. For comparison also
the results of the simple displacement approximation (triangles) are shown.
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For Gd and Yb doped ceria in constant pressure case, the change in volume between transition
state and initial state ∆V is smaller than in Sm doped ceria (Table 6.4). In fact, a decrease in ∆V
with decreasing ionic radius is found. Smaller dopants lead to smaller volume expansions during
the migration. As a result, the attempt frequency at constant pressure increases compared to the
constant volume case by a factor of about four/two for the Ce-Gd/Ce-Yb edge and three for the
Gd-Gd/Yb-Yb edge at 900 K. Again, the change in electronic migration energies is small.

migration ∆E0
el (p,T ) ∆V ν0 (p,T )

edge (eV) (Å3) (s−1)

Ce-Ce 0.602 3.06 7.67 · 1012

Ce-Gd 0.724 2.67 5.40 · 1012

Gd-Gd 1.026 2.20 7.55 · 1012

Ce-Yb 0.732 1.59 2.70 · 1012

Yb-Yb 0.723 1.75 2.48 · 1012

Table 6.4: Electronic migration energies for different migration configurations, changes in volume
between transition state and initial state ∆V and oxygen vacancy attempt frequencies ν0 (p,T )
(Vineyard) at constant pressure (p = 0) and 900 K
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6.2 Calculation of the Attempt Frequency:

Doping in Nearest Neighborhood

Alternatively to doping at the migration edge, dopants can appear in nearest neighborhood to the
start position of the migrating oxygen vacancy (Fig. 6.9).

Figure 6.9: Jump environment with a dopant in nearest neighborhood to the start position of the
migrating oxygen vacancy (left). Cerium ions are green spheres, dopants are blue spheres, the
oxygen ion is a red sphere and the oxygen vacancy is a red cube. On the right, the positions of
the migrating oxygen vacancies are labeled start (s), center (c) and destination (d).

For the constant volume case, similar to doping at the migration edge, doping in nearest neigh-
borhood to the start position of the migrating oxygen vacancy also leads to an increase in attempt
frequency for more Sm dopants (Fig. 6.10, Table 6.5). However, a maximum in attempt frequency
is found for a single Sm dopant in nearest neighborhood to the start position.

Doping with Sm in nearest neighborhood to the start position
of the migrating oxygen vacancy increases the attempt frequency.
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Figure 6.10: Attempt frequencies for Sm doped ceria with dopants at migration edge and in nearest
neighborhood to the start position of the migrating oxygen vacancy.

94



6.2 Calculation of the Attempt Frequency: Doping in Nearest Neighborhood

cations at dIS dTS dTS − dIS ∆E0
el (V,T ) ν0 (V,T )

start (Å) (Å) (Å) (eV) (s−1)

Ce, Ce 4.148 4.267 0.119 0.587 1.47 · 1012

Ce, Sm 4.153 4.270 0.118 0.562 2.01 · 1012

Sm, Sm 4.156 4.272 0.116 0.531 1.75 · 1012

Table 6.5: Electronic migration energies for different migration configurations, distances of the edge
cations in the initial and the transition state and oxygen vacancy attempt frequencies ν0 (V,T )
(Vineyard) at constant volume (V = const.)

For the constant pressure case, the attempt frequency increases monotonously with an increasing
amount of Sm dopants in nearest neighborhood to the start position of the migrating oxygen vacancy
(Table 6.6). This is surprising, as for doping at the migration edge the trend for the constant volume
and constant pressure case was similar.

For an increasing number of Sm dopants at the edge, the migration volume decreases. For an
increasing number of Sm dopants in nearest neighborhood to the start position, the migration
volume increases. While the volume of the supercell in the initial state is similar for dopants at
the edge and the start position, the volume expansion is stronger for dopants at the start position
especially perpendicular to the direction of migration. This is surprising, as the widening of the
edge cation distance increases with doping at the edge while it decreases with doping at the start
position. The volume expansion is therefore caused by long-range distortion.

cations at ∆E0
el (p,T ) ∆V ν0 (p,T )

start (eV) (Å3) (s−1)
Ce, Ce 0.602 3.06 7.67 · 1012

Ce, Sm 0.593 3.26 1.16 · 1013

Sm, Sm 0.525 3.82 1.37 · 1013

Table 6.6: Electronic migration energies for different migration configurations, changes in volume
between transition state and initial state ∆V and oxygen vacancy attempt frequencies ν0 (p,T )
(Vineyard) at constant pressure (p = 0)
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6.3 Experimental Attempt Frequencies

6.3.1 Experimental Values for Pure Ceria
Although the Vineyard method directly uses the normal mode frequencies in the initial and transi-
tion state (see Chapter 2.3), their resulting ratio defines a frequency that differs from any existing
frequency in the real lattice. [112] However, the attempt frequency of oxygen ion jumps can be ex-
tracted as an average macroscopic property based on the temperature dependence of the oxygen ion
conductivity or the oxygen diffusion coefficient. Common experiments to examine the experimental
attempt frequency are therefore direct current measurements (DC), impedance spectroscopy (AC),
Secondary Ion Mass Spectrometry (SIMS) and Gas Phase Analysis (GPA). Experimental attempt
frequencies and oxygen vacancy diffusion coefficients are shown in Table 6.7 and Fig. 6.11.

source crystallinity method domain T (◦C) νexp,V••O
(s−1)

this work poly AC bulk 227−733 (9± 2) · 1014

Wang et al. [315] polyhp AC bulk 237−352 (9± 4) · 1013

Wang et al. [315] polylp AC bulk 237−596 (8± 1) · 1013

Floyd [258] sc GPA bulk 836−1151 (2± 3) · 1015

Brugner et al. [248] sc, poly DC bulk, total 1200−1500 (6.7± 0.8) · 1019

Wang et al. [315] polyhp AC, DC total 621−847 5.2 · 1021

Wang et al. [315] polylp AC, DC total 507−891 4.9 · 1017

Kamiya et al. [260] poly SIMS total 1095−1297 (1.6± 0.9) · 1020

Kamiya et al. [260] poly SIMS total 797−895 (3± 5) · 1014

Kamiya et al. [259] poly GPA total 1094−1296 (3± 2) · 1022

Tuller et al. [83] sc[a] AC, DC bulk 200−1150 2.3 · 1013

Naik et al. [84] poly[b] DC total 1030−1330 (1.1± 0.2) · 1013

Table 6.7: Experimental oxygen vacancy attempt frequency νexp,V••O
of pure ceria for polycrystalline

samples (poly) and single crystals (sc) calculated based on impedance spectroscopy (AC), di-
rect current (DC), Secondary Ion Mass Spectrometry (SIMS) and Gas Phase Analysis (GPA)
measurements. The number of charge carriers is based on the purity (hp = high, lp = low) of
the starting material or the non-stoichiometry for [a] CeO1.992 and [b] CeO1.96. The error of the
attempt frequency is given according to the linear regression.

SIMS and GPA experiments were used by Floyd [258] and Kamiya et al. [259,260] to investigate the
oxygen tracer diffusion coefficient D∗O2− . The oxygen tracer diffusion coefficient is related to the
oxygen self-diffusion coefficient DO2− by a correlation factor fO2− according to D∗O2− = fO2−DO2− .
In contrast to the jumps of an oxygen vacancy, the jumps of a tracer ion are correlated, leading to a
smaller mean square displacement for the tracer and a correlation factor below unity. For vacancy
diffusion in a simple cubic lattice the correlation factor is 0.65 at very low defect concentrations. Be-
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yond that, the tracer correlation factor is a function of the defect concentration: Increasing vacancy
concentrations decrease the probability of ‘return jumps’ for a tracer atom, the tracer correlation
decreases and fO2− increases. In addition, for increasing defect concentration the ion-vacancy inter-
action increases and the distribution of conducting ions influences the tracer correlation factor. [102]

Therefore, the here used correlation factor (fO2− = 0.65) is an approximation.

The oxygen self-diffusion coefficient DO2− is related to the oxygen vacancy self-diffusion coeffi-
cient DV••O

according to Eq. 2.5 using the charge carrier concentration. For pure ceria at oxidizing
conditions, the determination of the concentration is quite difficult as oxygen vacancies exist due
to (extrinsic) impurities, reduction and intrinsic disorder. However, many studies point out a high
impurity concentration compared to the intrinsic- (anti-Frenkel) or reduction-dominated oxygen
vacancy concentration at p (O2) = 0.2 bar for temperatures below 800 ◦C. [50–53] At higher tempera-
tures, the oxygen vacancy concentration increases especially due to reduction, though it could only
be roughly estimated for experimental samples with unknown impurities. Therefore, in this work,
the charge carrier concentration for all temperatures was derived from the purity of the starting
materials according to literature assuming trivalent impurities [258–260,315] or, for one sample, from
mass spectrographic analysis. [199,248] The approximated oxygen vacancy concentration varies over
two orders of magnitude for stoichiometric ceria (1017 – 1019 cm−3) and is a reason for scattering
of the extracted oxygen vacancy self-diffusion coefficient (see Fig. 6.11a).

In literature, direct current measurements and impedance spectroscopy experiments were used to
measure the oxygen ion conductivity. [83,84,248,315] In this work, additional impedance spectroscopy
experiments were performed (see appendix). Using the charge carrier concentration, the conductivity
can be converted into the ‘conductivity’ diffusion coefficient or charge diffusion coefficient of the
oxygen ions Dσ,O2− , which is defined according to the classical Nernst-Einstein equation (Eq. 2.3).
It should be noted that Dσ,O2− has the dimensions of a diffusion coefficient but is not defined by
Fick’s first law. Conductivity and tracer diffusion coefficients can be compared using the Haven
Ratio HR = D∗O2−/Dσ,O2− . [102,400] Only for non-interacting defects the Haven Ratio is equal to
the tracer correlation factor. Otherwise, a thermodynamic factor has to be considered, which was
neglected in this work. Based on this assumption, the conductivity diffusion coefficient Dσ,O2− can
be converted in the oxygen vacancy self-diffusion coefficient DV••O

according to Eq. 2.5 using again
the charge carrier concentration.

Experimental attempt frequencies νexp,V••O
and activation enthalpies ∆Ha can be extracted as

an average macroscopic property from the Arrhenius behavior of the oxygen vacancy self-diffusion
coefficient DV••O

according to Eq. 2.4 for a known jump distance and geometrical factor (Eq. 2.3).
The results are shown in Table 6.7.

Surprisingly, the experimental attempt frequency for pure ceria varies
vastly between 1013 – 1022 s−1.

In the following section, it will be explained that all experiments are probably based on the same
elemental frequency for a jump process.
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Figure 6.11: Experimental (a) oxygen vacancy diffusion coefficients and (b) resulting attempt fre-
quencies of pure ceria using bulk [315] and total [83,84,248,258–260] domain. Though experimental
attempt frequencies vary over several orders of magnitude, all experiments are probably based
on the same elemental frequency for a jump process.

6.3.2 Reasons for Scattering

The vast scattering of the experimental attempt frequency is caused by measurement technique,
sample properties and temperature range.

Minor influences of the measurement technique include measuring inaccuracies, different experi-
mental methods for either tracer diffusion or conductivity and the conversion of D∗O2− and Dσ,O2−

to the oxygen vacancy self-diffusion coefficient. Measuring inaccuracies are assumed to be small,
especially since the experimental attempt frequency is extrapolated from measurements at several
temperatures. Oxygen tracer diffusion coefficients and conductivities from different experiments dif-
fer due to diverse oxygen vacancy concentrations: The oxygen tracer diffusion coefficients of SIMS
and GPA measurements for pure ceria vary about one order of magnitude. [258–260] The ionic conduc-
tivities measured in the present work and literature vary up to two orders of magnitude. [84,248,315]

However, similar results for one sample are expected using different experimental methods. For
example, Tuller et al. [83] observed the same ionic conductivity for single crystals using impedance
spectroscopy and direct current measurements. To compare the different experiments the charge
carrier concentration has to be approximated, which is a reason for scattering of the oxygen vacancy
self-diffusion coefficient. Furthermore, D∗O2− and Dσ,O2− are compared, thereby approximating val-
ues for the tracer correlation factor and the thermodynamic factor. For Gd doped ceria single
crystals, where the charge carrier concentration is well defined, Ruiz-Trejo et al. [175] reported a
tracer diffusion coefficient based on SIMS measurements one order of magnitude smaller than the
conductivity diffusion coefficient. In the related fluorite structure, 9.5 mol% single crystal yttria-
stabilized zirconia (YSZ), Manning et al. [401] reported a Haven Ratio of 0.33 for low and 0.48 for high
temperature. Both examples give a lower product of tracer correlation factor and thermodynamic
factor than assumed in this work, though this is expected for high defect concentrations. For small
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defects concentrations as in pure ceria, the tracer correlation factor of 0.65 may be a good choice.
Therefore, the conversion of D∗O2− and Dσ,O2− to the oxygen vacancy self-diffusion coefficient has
probably only a minor impact on the scattering of the experimental attempt frequency.

To validate the different macroscopic experimental techniques, the diffusion coefficients can be
compared to microscopic Nuclear Magnetic Resonance (NMR) measurements. Avila-Paredes et
al. [210,256] measured the oxygen transport in Ce0.95Sc0.05O1.975 using the bulk conductivity relax-
ation frequency from impedance spectroscopy measurements as well as the temperature dependence
of 45Sc magic-angle-spinning NMR line shapes. The resulting prefactors from the extrapolation of
the oxygen vacancy hopping frequencies are similar for both impedance with (4.6 ± 0.1) · 1013 s−1

and NMR measurements with (4.3± 1.1) · 1013 s−1. Fuda et al. [402] examined lightly Y doped ceria
(0.02 – 0.6 mol% Y2O3) using NMR. They found the correlation times of the vacancy motion to
be essentially independent of dopant fraction. The resulting prefactor from the extrapolation of the
oxygen vacancy hopping frequency is (2.8 ± 0.3) · 1012 s−1. The nanocrystalline samples that are
examined by Fuda et al. [402] feature a large grain boundary effect, while NMR measurements can
give bulk properties for polycrystalline samples due to the low grain boundary volume as in the case
of Avila-Paredes et al. [210,256] Both NMR results fit well with the calculated attempt frequencies for
pure ceria.

A major influence on the macroscopic experimental attempt frequency are sample properties
which include the mentioned diverse oxygen vacancy concentrations, the macroscopic structure
composed of bulk and grain boundaries and different impurities. In this work, all calculations were
performed in the bulk domain. In order to allow a better comparison of the calculated attempt
frequency with experimental values, single crystals should be used or bulk properties from polycrys-
talline samples should be extracted. Otherwise, the total conductivity or diffusion could result from
the contribution of the bulk (grain, lattice) and the grain boundary domain. Impedance spectroscopy
is an important tool to separate both contributions and has been extensively used on pure [83,315]

and samarium doped ceria. [74,156,158,180,403,404] However, only a few authors specify the bulk ionic
conductivity separately. Well known is the relation between bulk and grain boundary conductivity
for rare-earth doped ceria: Zhan et al. [74] and Bellino et al. [180] separated the bulk, grain boundary
and total conductivity of Sm and Y doped ceria showing a bulk conductivity that is larger than
both grain boundary and total conductivity. The resulting experimental attempt frequency for the
bulk is however only a fraction (0.8–0.005) compared to the experimental attempt frequency of the
total domain caused by higher activation enthalpies for the total domain. For pure ceria, Wang et
al. [315] measured bulk conductivities orders of magnitude larger than the total conductivity with
an activation enthalpy lower than for the total domain. In fact, Figure 6.11 and Table 6.7 show,
for most stoichiometric ceria measurements, higher ∆Ha and higher νexp,V••O

for the total domain
compared to the bulk. While the experimental attempt frequencies for the bulk domain fit well with
the calculated attempt frequencies for pure ceria, the attempt frequencies for the total domain are
significantly higher. However, Brugner et al. [248] reported the same conductivity for polycrystalline
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samples and single crystals resulting in the same experimental attempt frequency though compared
to other bulk measurements νexp,V••O

is very large here. Furthermore, it has been shown that the
contribution from the grain boundaries to the total resistivity diminishes at high temperature. [187]

Therefore, also attempt frequencies for the total domain are shown included in Fig. 6.11.

Beyond the macroscopic structure, even small amounts of impurities that associate with oxy-
gen vacancies, e.g. small rare-earth cations, can increase the activation enthalpy. While the impact
on the oxygen vacancy self-diffusion coefficient at intermediate temperatures might be small, dif-
ferent impurities may lead to different activation enthalpies, which would significantly influence
the experimental attempt frequency. Therefore, Kinetic Monte Carlo simulations were performed
similarly to an earlier work [55] between 500 and 800 ◦C without considering changes in the jump
attempt frequency or the existence of polarons. For all jumps the calculated jump attempt frequency
(1.47 ·1012 s−1) was applied and in pure ceria a migration energy of 0.47 eV was used. Subsequently,
the conductivity was fitted according to Eq. 2.4. In contrast to CeO1.99995, where ∆Ha and νexp,V••O

are similar to the input values, for Ce0.999Sc0.001O1.9995 the apparent activation enthalpy (1 eV)
and attempt frequency (1.54 ·1014 s−1) increase significantly, while the oxygen vacancy self-diffusion
coefficient decreases up to two orders of magnitude. This effect can only be observed for dopants
with strong association between dopant and oxygen vacancy. For lightly Sm or La doped ceria, no
significant influence on oxygen vacancy self-diffusion coefficient, activation enthalpy and attempt
frequency can be observed. Therefore, different impurities can significantly influence the experimen-
tal attempt frequency. Experimentally, this can be seen e.g. in the conductivity measurements by
Wang et al. [315]

Finally, the macroscopic experimental attempt frequency is influenced by the measured
temperature range due to the above-discussed influences. While the conductivity and the oxy-
gen tracer diffusion coefficient are continuous with temperature, the activation enthalpy may
change for different temperature regimes. This leads to kinks in the oxygen vacancy self-diffusion
coefficient and jumps in the experimental attempt frequency if a constant charge carrier concen-
tration is assumed as discussed in Chapter 2.4.4. Two types of kinks are well known in literature:
For a change from a low temperature region dominated by impurities to a high temperature region
dominated by reduction, the activation enthalpy increases abruptly for higher temperatures. As the
number of oxygen vacancies created by reduction (or intrinsic disorder) increases with temperature,
their concentration may exceed the number of defects created by impurities. Defects created by
reduction and intrinsic defects have to be formed leading to an increase in activation enthalpy. [26,260]

Actually, Kamiya et al. [260] reported for low temperature an experimental attempt frequency orders
of magnitude lower than for high temperature indicating a change from an impurity- to a reduction-
dominated regime. It shall be mentioned that Kamiya et al. measured penetration depths for low
temperature similar to the grain size of pure ceria, which might lead to bulk dominated properties
while at high temperatures the penetration depths are orders of magnitude higher. [405] Ideally, for
investigating reduction-dominated regions, the change in the charge carrier concentration should be
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included in the oxygen vacancy self-diffusion coefficient, which might lead to similar experimental
attempt frequencies at both temperature regimes.

The second type of kink is a decrease in activation enthalpy for higher temperatures caused by
a change in the diffusion behavior for different temperatures, especially for non-stoichiometric or
doped ceria. [174,180,185,187,406] Zhan et al. [74] described a critical curvature temperature Tb for Sm
doped ceria. Below this temperature, oxygen vacancies are trapped by samarium ions

[
Sm

′

Ce −V••O
]
.

Therefore, ∆Ha is the sum of the ‘migration enthalpy’ of the oxygen ions and the association en-
thalpy of

[
Sm

′

Ce −V••O
]
while at higher temperature ∆Ha is equivalent to the ‘migration enthalpy’

of the oxygen ions. This causes a kink in the ionic conductivity in the Arrhenius plot leading to lower
activation enthalpies and prefactors at high temperatures. This kink can be reproduced using Ki-
netic Monte Carlo simulation although further influences on the activation enthalpy are given. [55,287]

For another perspective on this effect, Zhan et al. assume that the concentration of the oxygen va-
cancies depends on the association enthalpy of the forming

[
Sm

′

Ce −V••O
]
defect complexes at low

temperature while at T > T b the concentration of oxygen vacancies is set by the dopant fraction, as
all oxygen vacancies are free. Taking into consideration that the association reduces the oxygen va-
cancy concentration, this could lead to the same attempt frequencies at low and high temperatures.
Therefore, the experimental attempt frequency can only be extracted above the critical curvature
temperature if the degree of association is unknown. This effect was examined using Kinetic Monte
Carlo simulations similar to an earlier work [55] without considering changes in the jump attempt
frequency. Although Zhan et al. investigate highly doped ceria, the Kinetic Monte Carlo simulations
show this effect for Sc doped ceria for dopant fractions as low as Ce0.99998Sc0.00002O1.99999 around
Tb = 800 ◦C (Fig. 9.4 in appendix). For the above-mentioned Ce0.999Sc0.001O1.9995, apparent acti-
vation enthalpy (0.67 eV) and attempt frequency (4.65 · 1012 s−1) decrease again for conductivities
fitted between 1100 and 1300 ◦C. However, impedance measurements of the bulk domain in pure
ceria are commonly limited to low temperatures due to a restricted frequency range.

Obviously, measurements of non-stoichiometric ceria might lead to different results as the presence
of polarons changes the diffusion behavior. In fact, the smallest activation enthalpies in this work
are the ones measured by Tuller et al. [83] and Naik et al. [84] [see Fig. 6.11(b)].

In summary, differences in measurement technique, sample properties or investigated temperature
range change the oxygen self-diffusion coefficient by about two orders of magnitude at intermediate
temperature (see Fig. 6.11a).

The vast scattering of the experimental attempt frequency
in the range of nine orders of magnitude is caused

by a change in activation enthalpy.

Especially different contributions of bulk and grain boundary domain to the total conductivity or
diffusion, different impurities, a change from an impurity- to a reduction-dominated regime and a
change in the diffusion behavior can lead to significant changes in the activation enthalpy. A closer
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examination shows a clear dependence of the experimental attempt frequency on the activation
enthalpy [Fig. 6.11(b)]. As diffusion coefficients are extrapolated to infinite temperature to obtain
experimental attempt frequencies, larger activation enthalpies lead obviously to larger attempt fre-
quencies. If now the oxygen tracer diffusion coefficient is identical for all measurements at a specific
temperature, the relation between experimental attempt frequency and activation enthalpy is given
by

DV••O
= l2 · νexp,V••O

· exp
(
−∆Ha

kBT

)
. (6.5)

All oxygen vacancy diffusion coefficients were fitted according to Arrhenius (Eq. 2.4). Using the
resulting activation enthalpies and experimental attempt frequencies, an average oxygen vacancy
diffusion coefficient at 1600 K was fitted (Eq. 6.5). Here, 1600 K showed the best agreement for all
measurements. Figure 6.11a already shows that all DV••O

can be described as a function of νexp,V••O

and ∆Ha using an average oxygen vacancy diffusion coefficient at 1600 K. This is even true for non-
stoichiometric ceria. The good regression of Eq. 6.5 in Fig. 6.11(b) verifies that all measurements
can be linked:

The experimental attempt frequency can be described
as a function of the activation enthalpy for all measurements.

Therefore, it is assumed that all experiments are based on the same elemental frequency for a
jump process, which is similar to the calculated attempt frequency.

The main influences that are causing the vast scattering of the experimental attempt frequency
are recapitulated in the following:

Samples of low purity exhibit a smaller experimental bulk attempt frequency than predicted by
the fit (Eq. 6.5). This indicates that the charge carrier concentration may be overestimated for these
samples.

The total domain indeed has similar oxygen vacancy self-diffusion coefficients compared to bulk
measurements; however, most experiments show a higher activation enthalpy leading to higher ex-
perimental attempt frequencies obviously due to the grain boundary contribution. [315]

High concentrations of impurities that associate with the oxygen vacancies lead to a significant
increase in activation enthalpy and experimental attempt frequency especially at low temperatures
where dopants and oxygen vacancies possibly associate. This can be seen by comparing measure-
ments from this work with the bulk domain of Wang et al. [315]

With increasing temperature the charge carrier concentration increases, one example is given by
Kamiya et al. [260] whose low temperature regime might show bulk dominated properties indicated
by the low experimental attempt frequency. Brugner et al. [248] show similar high νexp,V••O

and ∆Ha

at high temperature for both single crystals and polycrystalline samples indicating that at high tem-
peratures a reduction-dominated region exists. In this work, a constant charge carrier concentration
was used, leading for a reduction-dominated region to an overestimated increase in oxygen vacancy
self-diffusion coefficient. Consequently, the resulting experimental attempt frequency is too high.
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The example of pure ceria emphasizes the difficulties in measuring the experimental attempt
frequency. While calculations are often performed in defect-poor (or periodic) materials, creating
these materials experimentally is challenging. Here, the experimental bulk attempt frequencies for
stoichiometric ceria are the best values for comparison and indeed agree with the calculated attempt
frequency.

6.3.3 Experimental Values for Doped Ceria
For the bulk of Sm and Y doped ceria, [74,167,180,407] a similar fit of the macroscopic, experimental
attempt frequencies using Eqs. 2.3 and 2.4 would lead to an increase in the experimental attempt
frequency with increasing dopant fraction. Here, overestimated attempt frequencies for small dopant
fractions [167,407] were neglected due to an unknown number of charge carriers because of additional
impurities.
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Figure 6.12: The (a) ionic conductivity for the simple model and regression according to Eqs. 2.3
and 2.4. The fit parameters are the (b) apparent oxygen vacancy attempt frequency and (c) the
apparent activation enthalpy.

However, despite the considerations above, comparing the attempt frequency for doped ceria
is more difficult, since the classical Einstein equation cannot be used (Eq. 2.3) as there are many
defects, which will interact. Moreover, in doped ceria, a variety of possible defect configurations exists
leading to a distribution of different jump environments with a distribution of migration energies
and possibly different local attempt frequencies. In contrast, in experiments, the linear interpolation
of the conductivity with temperature in the Arrhenius plot gives only a single value for the attempt
frequency and for the activation enthalpy. Comparing a single fit value with the actually present
distribution is not trivial. Beyond that, the apparent value of the attempt frequency obtained by
fitting is directly influenced by the distribution of migration energies.

This dependency can be shown in a simple model: A highly ordered, fluorite-structured crystal is
considered, half of the migration energies are 0.5 eV and the other half is larger by a value b. Both
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jump environments appear alternating. Now, a single oxygen vacancy jumps through the crystal.
Each jump has the same attempt frequency. To simulate the ionic conductivity Kinetic Monte Carlo
simulations can be used according to previous calculations. [55,287] In Fig. 6.12a, the oxygen ion
conductivity for the simple model was calculated between 500 and 700 K for different b-values. All
linear regressions of the simulated conductivities, naively based on Eqs. 2.3 and 2.4, show a good
fit.

The fit parameters are the apparent attempt frequency and the apparent activation enthalpy
shown in Fig. 6.12(b,c). The resulting activation enthalpy is about 0.5 eV + b. Therefore, the ac-
tivation enthalpy is strongly influenced by the higher migration energy. Although always the same
attempt frequency in the Kinetic Monte Carlo simulations is used, the apparent attempt frequency
increases for higher migration energies. For high b-values only the higher migration energy de-
termines the ionic conductivity and the lower migration barrier is passed in a considerably small
amount of time. Therefore, the covered distance is doubled, which appears here in the doubled
attempt frequency.

The effect is already mentioned in literature. Wang et al. [315] explains the increase in pre-
exponential factor for high dopant fractions with the migration distance after each rate-controlling
jump, which increases beyond the lattice jump distance of the oxygen vacancy.

This simple example shows that the experimental attempt frequency
is strongly influenced by the distribution of migration energies.

This effect depends strongly on the chosen temperature range. For infinite large temperature, only
the attempt frequency determines the ionic conductivity and the experimental attempt frequency is
independent of the distribution of migration energies. This is shown in Fig. 6.13, where conductivities
at infinite large temperature were chosen according to the limit of Eq. 2.4.
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Figure 6.13: The ionic conductivity for the simple model and regression (lines) according to Eqs. 2.3
and 2.4 between 500 and 700 K. The values for infinite temperatures were chosen according to
an educated guess.
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Therefore, Kinetic Monte Carlo simulations have to be performed, which include different at-
tempt frequencies for different ionic configurations, to compare calculated attempt frequencies with
experimental attempt frequencies for doped ceria.

Conclusion

The attempt frequency for an oxygen ion jump in pure and Sm doped ceria was calculated. The
convergence of the phonon mesh was shown pointing out that the common reduction to the Gamma
point is not sufficient to calculate the attempt frequency. The resulting attempt frequency for the
constant volume case in harmonic approximation

(
1.47 · 1012 s−1) and constant pressure case in

quasi-harmonic approximation
(
7.67 · 1012 s−1) for pure ceria at 900 K is in agreement with common

literature estimates and experiments. Experimental attempt frequencies scatter within several orders
of magnitude while they are probably based on the same elemental frequency for a jump process.
The calculated attempt frequency is unaffected by doping with a single Sm ion at the migration
edge while a Sm-Sm edge exhibits a significantly larger attempt frequency. Smaller dopants lead to
a decrease in attempt frequency. Doping with Sm at the start position also increases the attempt
frequency. Calculated attempt frequencies of doped ceria should only be compared with experimental
attempt frequencies by performing Kinetic Monte Carlo simulations.
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6.4 KMC Simulations with Varying Attempt

Frequencies
KMC simulations were performed with four different sets of attempt frequencies to investigate the
influence of varying attempt frequencies on the ionic conductivity. The used c1+sd [ds] model with
an interaction radius of 5.41 Å will be introduced in Chapter 7.2. At first, fixed similar attempt
frequencies for all configurations with ν0 (V,T ) from the pure ceria case were employed. Alternatively,
for the three edge configurations different attempt frequencies according to the constant volume case
were used. The last two sets of attempt frequencies consider further varying attempt frequencies:
Additionally, varying attempt frequencies were introduced for dopants at the start position (Fig. 6.9)
based on the case for a single dopant. Finally, also varying attempt frequencies were introduced for
dopants at the end position, for which the same change compared to the start position was assumed.

Figure 6.14 shows the very small influence of variations in the migration edge attempt frequency
as the curves are close to each other. The reason for the small influence is the high migration energy
for doped edges. Only at high temperature and high dopant fraction a significant influence can be
found since in this case many doped edges exist and sufficient thermal energy is available for jumps
through doped edges.
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Figure 6.14: KMC simulations of the ionic conductivity for Sm doped ceria with fixed and varying
attempt frequencies. Lines are a guide to the eye only.

Varying the attempt frequency of the start position has a significant influence, which starts at
low temperature and intermediate dopant fractions. Jumps away from dopants in nearest neighbor-
hood position, which free trapped vacancies and feature a large attempt frequency, appear often.
Therefore, the ionic conductivity is increased.

If the same change in attempt frequency is assumed for jumps with dopants in the destination
position, the ionic conductivity increases at intermediate dopants fractions and decreases at high
dopant fractions for 500 °C. For 1100 °C, the ionic conductivity decreases at high dopant fractions.
As an increase in attempt frequency for the destination position leads to an increase in trapping, a
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decrease in ionic conductivity can be expected. The trapping increases at low temperature, as less
thermal energy is available. Therefore, the above-described increase in conductivity is surprising.
This implicates that at intermediate dopants fractions for 500 °C common diffusion paths cross
dopant sites. Increasing the frequency of trapping processes, therefore, increases the conductivity. For
increasing dopant fractions, more Sm-Sm edges appear and block the migrating oxygen vacancies. At
1100 °C, considerably more thermal energy is available to cross trapping barriers so that the change
in ionic conductivity is negligible. The conductivity is obviously strongly influenced by trapping,
especially at low and intermediate dopant fractions, and blocking, especially at high dopant fractions.

The optimal dopant concentration is determined by an interplay of
trapping and blocking.

Fig. 6.15 shows the comparison between experimental ionic conductivities of the bulk domain
and the result of the KMC simulations. The experimental conductivities scatter significantly as
discussed in Chapter 6.3.2. Further reasons for the scattering will be investigated in Chapter 8.1.
The trends of experimental and theoretical results are in agreement. However, the scattering in
experimental values is significantly larger than changes in the simulated conductivity between the
different variations in attempt frequency. Therefore, a clear preference cannot be determined.
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Figure 6.15: KMC simulations of the ionic conductivity for Sm doped ceria at 500 °C with fixed and
varying attempt frequencies. Experimental values according to Zhan et al. [74] and Sanghavi et
al. [179] Lines are a guide to the eye only.

The temperature dependence of the ionic conductivity (Fig. 6.14) can be investigated by applying
the Arrhenius equation (Eqs. 2.3 and 2.4) between 500 °C and 1100 °C. The result is shown in Fig. 9.5
in the appendix. The behavior for all four cases is similar: The activation enthalpy ∆Ha increases
from 0.47 to 0.81 eV nearly linearly with increasing dopant fraction. The experimental attempt
frequency νexp,V••O

increases with increasing dopant fraction except for a plateau between x = 0.04
and 0.12. The activation enthalpy is similar for fixed and variable attempt frequency. For an increase
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in microscopic attempt frequency (from the fixed, to the edge-variable to the edge/start-variable
case), an increase in experimental attempt frequency νexp,V••O

can be found. Compared to the fixed
attempt frequency case, including attempt frequencies for the three edge configurations increases
νexp,V••O

up to 7% and additionally including attempt frequencies for dopants at the start position
increases νexp,V••O

up to 20%.

The microscopic increase in local attempt frequency leads to a
macroscopic increase in experimental attempt frequency.

In contrast, the activation enthalpy is similar. The microscopic increase in local attempt frequency
does not influence the activation enthalpy. This result can be combined with the previous obser-
vations: Doping with very small amounts of Sc leads to an increase in both experimental attempt
frequency and activation enthalpy at low and intermediate temperatures. The simple model study
above (Fig. 6.12) shows that the activation enthalpy is strongly influenced by the higher migration
energy and the attempt frequency is strongly influenced by the distribution of migration energies.
This may be summarized as follows:

The distribution of microscopic migration energies influences both macroscopic attempt fre-
quency and activation enthalpy. The distribution of microscopic attempt frequencies influences
the macroscopic attempt frequency but has only a small influence on the activation enthalpy.
Correlations between the macroscopic νexp,V••O

and ∆Ha as discussed in literature (see Chap-
ter 2.4.4) [163,164,167,169,196] are therefore caused by a change in the microscopic distribution of mi-
gration energies.
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In experiments, the macroscopic dependence of the diffusion coefficient on temperature is called
activation energy or enthalpy ∆Ha (see Chapter 2.2). However, in a solid electrolyte several defects
and therefore a large number of ionic configurations exists. Each of these microscopic jump envi-
ronments has an own migration energy Emig. In this chapter, the ab initio calculation of migration
energies and the creation of a migration energy model, which can predict migration energies for all
possible jump environments, are described.

First, the calculation of the migration energy using DFT is discussed with focus on the influence
of the supercell size. Deviations in the migration energy of ±0.01 eV, given by the accuracy of
Nudged Elastic Band (NEB) calculations within a set of parameters, change the probability of a
jump about ±11 % at 1000 K or about ±22 % at 500 K. Thus, deviations in the migration energy
have a great impact on the ionic conductivity. For pure ceria, the calculated migration energy is
briefly compared with experimental activation enthalpies.

In the following, an introduction to the mathematical foundations for the creation of linear and
additive models as well as an evaluation method is introduced. The modeling is presented separately
for the cation and the anion sublattice and the interaction of both sublattices is checked.

Finally, KMC simulations for different migration energy models are performed to investigate the
influence of the chosen model on the ionic conductivity. Further ionic conductivities are discussed
in Chapter 8.

7.1 Calculating the Migration Energy
In this work, oxygen ion jumps are labeled with all interactions of the migrating oxygen vacancy
before and after the jump. For this purpose, the interaction distances of either the cation or anion
sublattice are numbered consecutively according to Chapter 4.2.1 (e.g. 1NN, 2NN).

As a first example, only the six nearest cation sites around a jump are presented, the ‘6-cation
environment’ (see Fig. 7.1). The two cation sites on the plane crossing the transition state position
perpendicular to the jump direction are called ‘migration edge’. They have the same distance to initial
and final position of the jump (1NN↔1NN RE-V) and are nearest to the transition state position of
the migrating oxygen. This type of dopant position is called geometrically symmetric. An undoped
migration edge is called Ce-Ce edge. If rare-earth dopants (RE) are present, the labels Ce-RE edge or
RE-RE edge are used. The other two cation site pairs are near to either the initial (1NN→2NN RE-V)
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or final position (2NN→1NN RE-V). This type of dopant position is called geometrically asymmetric.
In a simplified nomenclature for the six cations, the number of dopant at each of the three cation

sites is enumerated. The format xyz is used with x standing for dopants near the initial position, y
for dopants at the migration edge and z for dopants near the final position of the migrating oxygen
vacancy. The number of dopants is labeled with Z for zero, O for one and T for two dopants. O*O
configurations, where each dopant is on the same side along to the jump direction, are marked
with ’e‘ for even. Other O*O configurations are marked with ‘c’ for cross. Examples are shown on
page 139.

For Sm doped ceria, these six nearest cation sites around a jump can be occupied by either a Ce
ion or a Sm dopant. The resulting number of possible jump configurations is 26 = 64 and can be
reduced by symmetry to 30 unique jump environments. A few examples are shown in Fig. 7.1.

(a) ZZZ (b) ZOZ (c) ZTZ (d) TTT

(e) OZZ (f) ZZO (g) OOZ (h) ZOO

Figure 7.1: Examples of migration configurations including only the six nearest cation sites around
a jump (6-cation environment). Cerium ions are green spheres, dopants are blue spheres, the
oxygen ion is a red sphere and the oxygen vacancy is a red cube.

7.1.1 Widening of the Edges Cation Distance
In Table 7.1, the migration energies for Sm doped ceria in the 2 × 2 × 2 supercell according to an
earlier work are shown. [1] The migration energy in pure ceria (ZZZ) increases for one Sm dopant
at the edge (ZOZ) and even more for two Sm dopants at the edge (ZTZ). The different change
in migration energy for either one or two dopants is caused by the local lattice distortion around
the two cations at the migration edge. As described before (Chapter 6.1), the migration energies of
the edge configurations are proportional to the widening of the edge cations. The widening is the
difference of distances of the edge cations in transition state (dTS) and initial state (dIS). Simply
described, this means that the cations at the edge must be pushed apart during the jump.

Sm dopants at the edge lead to a decrease of the edge cation distance in the initial state compared
to pure ceria, because Sm3+ dopants have a lower charge than Ce4+. In the transition state, Sm
dopants at the edge lead to an increase of the edge cation distance, because Sm3+ dopants have a
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7.1 Calculating the Migration Energy

migration dIS dTS dTS − dIS ∆E0
el (V,T )

configuration (Å) (Å) (Å) (eV)

ZZZ 4.153 4.266 0.113 0.518
ZOZ 4.146 4.266 0.120 0.692
ZTZ 4.142 4.277 0.135 1.091
OZZ 4.161 4.272 0.110 0.506
ZZO 4.147 4.272 0.125 0.427

Table 7.1: Electronic migration energies for different migration configurations and distances of the
edge cations in the initial and the transition state for the 2× 2× 2 supercell at constant volume.

larger ionic radius than Ce4+ and, therefore, must be pushed apart further. This strong widening
leads to an increase in the migration energy.

Sm dopants in the OZZ, ZZO or related jump configurations also result in an increase of the
edge cation distance in the transition state. However, in the initial state, an even stronger increase
(OZZ) or decrease (ZZO) of the edge cation distance takes place. For the OZZ jump configuration,
the therefore smaller widening of the edge cation distance leads to a decrease of the migration
energy. The decrease in migration energy is even more pronounced with increasing number of Sm
dopants at the edge since the effect scales with the increasing migration energy. Surprising is the
ZZO configuration, where a larger widening of the edge cation distance also leads to a decrease of the
migration energy. In general, for all jump configurations of the 6-cation environment, a correlation
between widening and the migration energy can be found.

The migration energy correlates with the difference of distances of the
edge cations in transition and initial state for each rare-earth dopant.

For Sm and Nd doped ceria, the migration energy generally increases for a larger widening of the
edge cation distance. However, a strong scattering can be found. For Y doped ceria the migration
energy decreases for a larger widening of the edge cation distance. In Fig. 7.2, the migration energy
as a function of widening of the edge cation distance is shown for all jump configurations of the 6-
cation environment. Jump configurations like ZOT, OOT and TOT (*OT) lead to smaller migration
energies than suggested by the linear fit. Jump configurations like ZTZ, OTZ and TTZ (*TZ) lead
to larger migration energies than suggested by the linear fit. Therefore, for selected configurations
a systematic deviation from the linear relation between migration energy and widening due to
local relaxation effects can be found. The 95%-confidence regions of the linear fits show a strong
correlation for Y doped ceria in the 2× 2× 2 supercell. For Y doped ceria in the 3× 3× 3 supercell,
a similar correlation can be found. For Sm doped ceria in the 3× 3× 3 supercell, results are similar
to the 2× 2× 2 supercell (Table 7.2).

In Fig. 7.3, the proportionality between widening and migration energy for different dopants is
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Figure 7.2: Migration energy and widening of the edges cation distance for all jump configurations

in the 6-cation environment. The widening is the difference of distances of the edges cations
in transition and initial state. Confidence region (95%) is shown. Y, Sm and Nd doped ceria,
2× 2× 2 supercell.

investigated further in the 3 × 3 × 3 supercell. For each selected jump configuration, ionic radius
and migration energy correlate. The dependence of the migration energy on the widening, however,
clearly differs between jump environments. The RE-RE edge leads to a large range of widenings.
For the ZZO jump configuration, the widening is similar for different dopants. While for all selected
jump configurations the distance of the edge cations increases for larger ionic radii in the transition
state, in the initial state the distance both increases (for OZZ, ZOO) and decreases (for ZOZ, ZTZ).
Therefore, the widening is similar for different dopants in the OZZ and ZZO jump configuration.
Still, for OZZ, the migration energy decreases with increasing ionic radius similar to the widening.
For ZZO, the migration energy increases with increasing ionic radius while the widening slightly
decreases.

If different dopants are compared, the following conclusion can be made: For small dopants,
which lead to widenings smaller than in pure ceria, the migration energy decreases with increasing
widening. For large dopants, which lead to widenings larger than in pure ceria, the migration energy
increases with increasing widening.

Doping with Gd and Sm leads to similar widenings as in pure ceria. Though Shannon suggests
larger ionic radii for both dopants compared to Ce4+, [32] Gd3+ and Sm3+ appear to be optimal
dopants that cause a low lattice distortion. As both dopants lead to large ionic conductivities in
experiments, a relationship between lattice distortion and large ionic conductivity might exist as
suggested in experimental literature (Chapter 2.5.2).
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7.1 Calculating the Migration Energy

migration dIS dTS dTS − dIS ∆E0
el (V,T )

configuration (Å) (Å) (Å) (eV)

ZZZ 4.163 4.274 0.111 0.482
ZOZ 4.154 4.274 0.120 0.649
ZTZ 4.153 4.284 0.131 1.049
OZZ 4.167 4.276 0.109 0.488
ZZO 4.156 4.276 0.120 0.413

Table 7.2: Electronic migration energies for different migration configurations and distances of the
edge cations in the initial and the transition state for the 3× 3× 3 supercell at constant volume.
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Figure 7.3: Migration energy and widening of the edges cation distance for different jump configu-
rations in the 3× 3× 3 supercell. The widening is the difference of distances of the edges cations
in transition and initial state.
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7.1.2 Supercell Size

Pure Ceria

The migration energy in pure ceria is calculated by introducing a single migrating oxygen vacancy
in CeO2. The calculation of migration energies depends strongly on the following choices: (a) The
computation method, which may include the use of empirical, interionic potentials or ab initio
calculations using DFT. (b) The computational details, in the case of DFT calculation e.g. the
choice of the charged state of the defects, the choice between LDA and GGA, the use of an Hubbard
U parameter as well as the choice of the used potential itself. Further influences are (c) the lattice
parameter and (d) the supercell size. Table 7.3 shows these influences on the calculated migration
energy of pure ceria according to literature, resulting in a range of 0.46–0.95 eV. [350]

Emig (eV) computational method reference

0.53 interionic potential Butler et al. [39]

0.47 interionic potential Conesa et al. [408]

0.74 interionic potential Pryde et al. [409]

0.63 interionic potential Balducci et al. [410,411]

0.95 interionic potential Bulgakov et al. [412]

0.70 GGA, PBE Geerlings et al. [413]

0.48 GGA, PBE Nakayama and Martin [54]

0.46 GGA, PW91 Andersson et al. [44]

0.53 GGA+U , PW91a Nolan et al. [346]

Table 7.3: Calculated migration energy in pure ceria according to literature.

aNolan et al. used different electron configurations compared to this work. They investigated
(Ce32O63)0 instead of (Ce32O63)2+ and two cerium ions neighbored to the oxygen vacancy are
reduced to CeCe’.

In this work, only a few parameters were exemplarily varied (see Fig. 7.4). The use of the 2000 and
the revised 2003 potential for the cerium ions (b) leads to a change in migration energy of 0.03 eV. [343]

The lattice parameter (c) can be chosen according to experimental values at room temperature
(5.411 Å) or even temperature-dependent with the linear thermal lattice expansion coefficient of
ceria (α = 1.10 ·10−5 K−1). [57,184,398,414,415] Alternatively, the defect-free material can be calculated
and its volume can be relaxed until the sum of all forces on the ions is zero. The variation of the
lattice parameter leads here to a difference of up to 0.2 eV in the migration energy for a change in
the lattice parameter of 0.1 Å. The electronic migration energy decreases linearly with increasing
lattice parameter. In contrast, metadynamics simulations in cooperation with P. C. Schmidt and
T. Bucko suggest that the free migration energy is independent of temperature although thermally
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Figure 7.4: Migration energy of a single oxygen vacancy in pure ceria as a function of used potential,
lattice parameter and supercell size. The electronic energy difference at absolute zero is shown.
Calculations are labeled with the used temperature-dependent experimental lattice parameters.

corrected experimental lattice constants are used for the simulations. [416] Though electronic and
free energy differ in the vibrational contributions, the change in lattice parameter with temperature
possibly may be neglected. Finally, increasing the supercell size from 2×2×2 to 3×3×3 (d) leads to
both a decrease in oxygen vacancy concentration and a decrease in the image Coulomb interactions
between the defects. Independent of the lattice constant, the difference in migration energy between
the 2× 2× 2 and 3× 3× 3 supercell is 0.04 eV in pure ceria with a single oxygen vacancy.

The right choice of these parameters is still a topic of discussion. In the following, the Ce-(2000)
potential [343] and a lattice constant of 5.49 Å based on a relaxed defect-free cell is used. [1] The
resulting migration energies for pure ceria are shown in Table 7.4. The influence of the supercell size
is further investigated in the following.

supercell size Emig (eV)

inf 0.466
4× 4× 4 0.471
3× 3× 3 0.482
2× 2× 2 0.518

Table 7.4: Calculated migration energy in pure ceria. The supercell extrapolated to infinite volume
is called ‘inf’.
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The here calculated migration energies are in agreement with the calculated literature data. In ad-
dition, experimental activation energies in pure ceria are similar, which are about 0.65 eV according
to ionic conductivity [315] and dielectric relaxation measurements [417] or 0.49 eV according to 17O-
NMR lattice relaxation measurements. [402,418] An overview of experimental activation enthalpies is
given in the next section.

Experimental Activation Enthalpy

In experiments, activation enthalpies for pure ceria were found to be between 0.23–3.35 eV (Ta-
ble 7.5). Reasons for the scattering were already discussed in Chapter 6.3. Especially different
contributions of bulk and grain boundary domain to the total conductivity or diffusion, different
impurities, a change from an impurity- to a reduction-dominated regime and a change in the diffu-
sion behavior can lead to significant changes in the activation enthalpy. Furthermore, a correlation
between the experimental activation enthalpy and experimental attempt frequency were found in
experiments (Fig. 6.11b) and simulations (Fig. 6.14).

source crystallinity method domain T (◦C) ∆Ha (eV)

this work poly AC bulk 227−733 1.13
Wang et al. [315] polyhp AC bulk 237−352 0.65
Wang et al. [315] polylp AC bulk 237−596 0.79
Floyd [258] sc GPA bulk 836−1151 1.09
Brugner et al. [248] sc, poly DC bulk, total 1200−1500 2.22
Wang et al. [315] polyhp AC, DC total 621−847 2.2
Wang et al. [315] polylp AC, DC total 507−891 1.65
Kamiya et al. [260] poly SIMS total 1095−1297 2.27
Kamiya et al. [260] poly SIMS total 797−895 0.87
Kamiya et al. [259] poly GPA total 1094−1296 3.35
Tuller et al. [83] sc[a] AC, DC bulk 200−1150 0.4
Naik et al. [84] poly[b] DC total 1030−1330 0.23

Table 7.5: Experimental activation enthalpy ∆Ha of pure ceria for polycrystalline samples (poly)
and single crystals (sc) calculated based on impedance spectroscopy (AC), direct current (DC),
Secondary Ion Mass Spectrometry (SIMS) and Gas Phase Analysis (GPA) measurements. The
number of charge carriers is chosen constant for all temperatures as discussed in Chapter 6.3.
Samples differ in purity (hp = high, lp = low) or non-stoichiometry with [a] CeO1.992 and [b]
CeO1.96.

For lightly Y doped ceria, where impurities and reduction have a smaller influence, the scattering
of the migration energy is smaller (0.49–0.9 eV see Table 7.6). As dopant fractions are rather low,
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the migration energies for lightly Y doped ceria might still be a good approximation for pure ceria.
Both experimental activation enthalpies for pure and lightly Y doped ceria especially for the bulk
domain are in agreement with the calculated migration energies in pure ceria.

source material method ∆Ha (eV)

Fuda [402] 0.02% Y2O3
17O-NMR lattice relaxation 0.49

Adler et al. [418] 0–0.6% Y2O3
17O-NMR lattice relaxation 0.49

Wang and Nowick [417] 0.5% Y2O3 dielectric relaxation 0.64
Tian et al. [407] 0.58% Y2O3 AC 0.84
Wang et al. [167] 0.05% Y2O3 AC 0.90

Table 7.6: Experimental activation enthalpy ∆Ha of lightly Y doped ceria for the bulk of poly-
crystalline samples calculated based on 17O-NMR lattice relaxation, dielectric relaxation and
impedance spectroscopy (AC) measurements.

Jumps in Doped Ceria

In doped ceria, dopants and additional oxygen vacancies are introduced and a vast amount of possible
ionic configurations around an oxygen ion jump exists. In this section, only the influence of dopants
on the migrating oxygen vacancy is investigated.

In this work, a model is developed to predict all related migration energies for these jump config-
urations using cells with only a few defects and the assumption that the influence of the cation and
anion sublattice on the migrating oxygen can be separated. As few defects as possible are used to
calculate parameters for the model since long-range Coulomb interactions lead to the repulsion of
the defects and their copies due to the periodic boundary conditions. Energies are even extrapolated
to an infinitely large supercell to minimize interactions and dependencies on the supercell size. The
model is tested versus defect-rich cells and cells with experimental defect concentrations.

Figure 7.5 shows the migration energy in pure and Sm doped ceria at different supercell sizes (x×
y× z) at constant volume, given by the relaxed defect-free material.1 The supercell size determines
the distance between the migrating oxygen vacancy and its mirror image. Increasing the supercell
in x- or y-direction changes the interaction of the oxygen ions perpendicular to the jump direction.
Increasing the supercell in z-direction changes the interaction of the migrating oxygen with its
periodic copies.

In pure ceria (ZZZ), extending the distance between the diffusing oxygen ions in the diffusion
direction decreases the migration energy significantly, while the migration energy slightly increases
with the extension of the perpendicular distance to the diffusion direction.

1Relaxing the volume of supercells containing defects would lead to different lattice parameters.
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Figure 7.5: Migration energy in Sm doped ceria at different supercell sizes at constant volume.

For Sm doped ceria, different jump configurations are shown in Fig 7.5. The migration energy of
the Ce-RE and RE-RE edge as a function of supercell size is shown for different dopants in Fig 9.6
and 9.7 in the appendix. For the selected jump configurations, the migration energy depends similar
on the supercell size as in pure ceria. Exceptions are the TTT configurations due to the large number
of dopants and the Lu-Lu and Sc-Sc edge due to the small ionic radius of the dopants. Figure 7.6
shows the change in migration energy with supercell size as a function of ionic radius. The change
in migration energy with increasing cubic supercell size is strongly negative for large dopants (e.g.
La), positive for small dopants (Sc) and negligible for Lu.

Increasing the distance between migrating oxygen ions by increasing the volume cubically or just
the z-direction decreases the migration energy in most cases since periodic interactions decrease.
However, decreasing interactions perpendicular to the migration direction mostly increases the mi-
gration energy. Here, the smaller supercell size restricts the moving oxygen vacancy leading to a
preferred direction. Exceptions are caused by defect cluster or small dopants. Large defect clusters
already restrict the moving oxygen vacancy. Small dopants lead to low migration energies and small
or even negative widenings of the edge cation distance (Fig. 7.3). The association energies of small
dopants (Fig. 5.1) already show a strong supercell size dependence, which indicates that the energy
change has components derived from both initial and transition state. While the above-discussed
widening of the edges cation distance correlates with the migration energy both in the 2 × 2 × 2
and 3 × 3 × 3 supercell for Y doped ceria, no correlation between the changes of both parameters
between both supercell sizes can be found.

According to Makov and Payne (Chapter 4.2.1), the migration energy for an infinitely large
supercell (‘inf’) was calculated using the 2 × 2 × 2 and 3 × 3 × 3 supercell. The result is similar to
an extrapolation using the 2× 2× 2, 3× 3× 3 and 4× 4× 4 supercell.
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Figure 7.6: Migration energy of Ce-Ce, Ce-RE and RE-RE edge as a function of ionic radius.

In Fig. 7.6, the dopants Mn2+, Tm3+ and Er3+ are shown as they have migration energies similar
to pure ceria. Mn2+ shows a similar behavior of the migration edge energy as a function of ionic
radius though it has a different charge state. This is contrary to the behavior of the association
energy (see Fig. 5.1). This suggests that the migration energy is rather a function of the widening
of the edge cation while the association energy is a Coulomb energy dominated property.

Comparing the supercell size dependence of the migration energy (Fig. 7.6) and the association
energy (Fig. 5.1) is surprising. For La doped ceria, the migration energy decreases with increasing
cubic supercell size while the association energy increases. As both energies feature an opposite
sign, the effect decreases with increasing cubic supercell size for La doped ceria. Both migration and
association energy show a change between increasing energy and decreasing energy with increasing
cubic supercell size as a function of dopant type. For the migration energy, the Ce-Lu and Lu-Lu
edge is independent of supercell size. For the association energy, Nd doped ceria is independent of
supercell size. Therefore, both energies feature similarities in their supercell size dependence.

Alternatively to a constant volume during migration, which is calculated in a defect-free material,
calculations can be performed with a constant pressure and a volume that is relaxed during the
migration. This leads to a change in volume of both initial and transition state as described in
Chapter 6.1.4.

The supercell dependence of the migration energy for the constant volume case can also be found
for the constant pressure case (Fig. 7.7). The migration energies change with a constant shift between
−0.02 eV and 0.04 eV. Positive shifts compared to the constant volume case can be found for single
dopants (ZOZ, OZZ, ZZO) and negative shifts for multiple dopants (ZTZ, OOZ, ZOO). Migration
energies for the infinitive large supercell differ accordingly. Therefore, the supercell dependence of the
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Figure 7.7: Migration energy in Sm doped ceria at different supercell sizes at constant volume (lines)
and pressure (dashed lines).

migration energy is not diminished by the relaxation of the cell volume. Interactions of defects and
their copies due to periodic boundary conditions still dominate the migration energy. The change
in volume during the jump of the oxygen ion is limited as atomic displacements in a solid proceed
with the speed of sound. [123–125] Therefore, calculations of the constant volume case are used in the
following.

Jumps with Adjacent Vacancies

Similar to the influence of dopants on the migrating oxygen vacancy, the influence of additional
oxygen vacancies can be investigated. In Fig. 7.8, the migration energy in a supercell containing two
oxygen vacancies is shown at different supercell sizes. According to Makov and Payne (Chapter 4.2.1),
the migration energy for an infinitely large supercell was calculated. The V-V distance before and
after the jump is noted.

The supercell size dependence is similar to the cation sublattice: Increasing the distance between
migrating oxygen ions by increasing the volume cubically or just the z-direction decreases the
migration energy in most cases since periodic interactions decrease. However, decreasing interactions
perpendicular to the migration direction increase mostly the migration energy. An exception is the
4NN→1NN V-V configuration. Here, the vector between the defects and migration direction is aligned.
Increasing the z-direction therefore increases the migration energy. Again, the 4NN V-V association
energy (Fig. 5.5) already shows a strong supercell size dependence, which indicates that the energy
change has components derived from both initial and transition state.

As expected according to the association energies (Fig. 5.5), jumps separating the vacancies
possess lower migration energies than jumps in the direction of an additional vacancy. An overview
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Figure 7.8: Migration energy with two oxygen vacancies at different supercell sizes.

of migration energies with the average distance between the oxygen vacancies before and after the
jump is shown in Fig. 7.9. An overview of all jump profiles is shown in Fig. 7.10.

It becomes obvious that the supercell size dependence differs significantly between different con-
figurations. The difference in migration energy between approach and detachment of the additional
vacancy generally decreases with increasing distance between the vacancies. The general trend sug-
gests that both migration energies converge to the migration energy for no additional vacancy, which
is given by a red line in Fig. 7.9.

The difference in migration energy between the jump for the approach and detachment of the
additional vacancy is given by the V-V association energy difference between both sites and can
be seen in Fig. 7.11 for an infinitely large supercell. Here, it is assumed that vacancies with a 5NN

or large distance do not interact and that, therefore, the association energy Eass(5NN V-V) is zero.
Black arrows show exact DFT energies differences, while blue arrows are constructed from the black
arrows using the termination Eass(5NN V-V) = 0.

The V-V association energy differences (arrows) show large asymmetries for 1NN↔2NN and
1NN↔4NN, medium asymmetries for 2NN↔5NN, 4NN↔5NN, 3NN↔6NN and 4NN↔8NN and small
asymmetries for all other jumps. The choice of a termination at Eass(5NN V-V) = 0 in Fig. 7.11 can
be verified by comparing the blue arrows with the difference in migration energy between approach
and detachment of the additional vacancy in Fig. 7.9 for an average defect distance of 5.7 Å or
more. Both energy differences are in agreement for the 3NN↔6NN, 4NN↔8NN (small value in 2×2×2
supercell) and 5NN↔7NN jump. The extrapolated difference for 6NN↔8NN with 0.09 eV is too large,
since the migration energy for the 3 × 3 × 3 supercell is already very small. The good agreement
confirms a termination of Eass(5NN V-V) = 0, which was already discussed in an earlier work. [55]
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Figure 7.9: Migration energies of an oxygen vacancy jump with an additional vacancy present. The
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and high Emig’s if the additional vacancy is approached. For large distances the migration energy
without an additional vacancy is approached, especially for larger supercell sizes.
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Figure 7.10: DFT migration energies in 3× 3× 3 supercell of ceria including two oxygen vacancies.
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7.2 Modeling the Migration Energy

7.2.1 Mathematics: Linear and Additive Models
The migration energies yi, which are observed from DFT calculations for each configuration i, can be
fitted to an model, which can be used to calculate the migration energy E(yi) for every possible ionic
configuration. Migration energies can be modeled using multiple linear and additive models. [419]

In a multiple linear model, the observables yi are metric, their expected values E(yi) and predicted
values ηi are equal and possess an error εi:

yi = ηi + εi, i = 1,...,n. (7.1)

E(yi) = ηi = β0 + β1xi1 + . . .+ βkxik = ηlini (7.2)

with the variables xi and the parameters βi. The errors are independent and identically distributed
with an expected value of zero E(εi) = 0 and a constant variance for all observations Var(εi) = σ2

with the standard deviation σ.

In an additive model, observations and errors are similar to a linear model, whereas both the ex-
pected and linearly predicted values ηlini differ in the use of functions f depending on the variables zi

E(yi) = ηi = ηlini + f1(zi1) + . . .+ fq(ziq) = ηaddi . (7.3)

In the linear model, the following decisive assumptions are made:

• The function f(x1, . . . ,xk) is a linear combination of variables xi and parameters βi (see
Eq. 7.2).

• The variables are independent.

• For confidence intervals and hypothesis tests the errors are often assumed to be normally
distributed, therefore a classical linear regression model is used. If errors increase with a
variable (heteroscedastic variance), variances of regression parameters are poorly estimated
and the classical linear regression model should be extended. [419]

In an additive model, additionally non-linear parameters can be included.

Models are developed by separating the (modeled) systematical compounds ηi and the statistical
errors εi, which are presumably caused by statistical errors in the DFT calculations. The regression
parameters are estimated using the method of least squares. The resulting estimated errors are
called residua. The modeling can be assessed by omitting single model parameters and obtaining
partial residua.
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Categorical Variables

Possible variables for the migration energy model (xi or zi) are the occupation of individual lattice
sites or the number of defects in a group of several lattice sites. The latter is employed in this work.
Both types of variables are discrete.1

If observations (migration energies) show no linear trend regarding xi, i.e. ηi 6= β0 + β1xi, the
discrete variables xi ∈ {0; 1; 2} can be interpreted as categorical. Therefore, a dummy variable in
binary form (zero/one) is defined for each category:

di,1 =

 1, if xi = 0
0, else

, di,2 =

 1, if xi = 1
0, else

, di,3 =

 1, if xi = 2
0, else

(7.4)

However, if a linear model with a constant value is applied (Eq. 7.5), the identifiability problem
occurs.

ηi = β0 + β1di,1 + β2di,2 + β3di,3 (7.5)

Any value can be added to β0 that was subtracted from β1, β2 and β3. Possible solutions are the
withdrawal of the constant value β0 or the withdrawal of one dummy variable. In this work, a
dummy variable is omitted and integrated into the constant β0.

Interactions between Variables

A goal in this work is the identification of independent variables. In contrast, interactions between
variables exist if the effect of a variable on the expected value depends on the value of another
variable. A simple example is shown in the following.

ηi = β0 + β1xi + β2zi + β3xizi (7.6)

1A continuous variable can take on any of the infinite number of values in a certain range,
while a discrete variable can only take on a finite number of values.
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7.2.2 Evaluation of Models
In case, several statistical models are available and data can be fitted to each model, a property that
indicates the goodness of fit is required. Here, the coefficient of determination R2, the adjusted R2

and residual standard error σresidual are introduced.

The variance of y can be divided into the variance of residuals, which is not explained by the
model variation, and the variance of dependent variable, which is explained by the model variation.

n∑
i=1

(yi − y)2

︸ ︷︷ ︸
n-variance of y

total sum of squares
SStot

=
n∑
i=1

(yi − fi)2

︸ ︷︷ ︸
n-variance of residuals
residual sum of squares

SSres

+
n∑
i=1

(fi − y)2

︸ ︷︷ ︸
n-variance of dependent variable

regression sum of squares
SSreg

(7.7)

where y is the average value of y and fi is the value according to the given model.

Then, the coefficient of determination R2 is defined as ratio of variances between estimated
residuals and dependent variable according to [420]

R2 = 1− Varres
Vartot

= 1− SSres/n

SStot/n
= 1−

∑n
i=1 (yi − fi)2

/n∑n
i=1 (yi − y)2

/n
(7.8)

where Varres is the sample variance of the estimated residuals and Vartot is the sample variances
of the dependent variable y. Here, n is the sample size. The coefficient of determination compares
the fit of the regression with the data compared to the fit of the simple average. R2 automatically
increases when additional variables are added to the model.

The adjusted R2 also includes the number of regressors in the linear model, which are the ex-
planatory, i.e. assumable independent, variables. [421]

R
2 = 1− SSres/dfe

SStot/dft
= 1−

∑n
i=1 (yi − fi)2

/(n− p− 1 )∑n
i=1 (yi − y)2

/(n− 1)
= R

2 = 1−

∑n

i=1
(yi−fi)2

n−p−1∑n

i=1
(yi−y)2

n−1

(7.9)

with the degrees of freedom dfe = n − p − 1 of the estimate of the underlying population error
variance and dft = n−1 of the estimate of the population variance of the dependent variable, where
p is the total number of regressors in the linear model without counting the constant term and n is
the sample size. [422]

While R2 can have values between 0 and 1, R2 has a similar or smaller value and can even be
negative. Accordingly, the coefficient of determination R2 is a measure of fit where a value of zero
means no linear relationship while for R2 = 1 a perfect linear relationship exists. However, low
values can still be ‘good’ if scattering is generally very high. On the other hand, high values can
still be ‘bad’ if the residuals reveal a neglected functional relationship. R2 can be used to compare
the suitability of alternative sets of explanatory variables, even if the number of explanatory terms
varies. This means, in contrast to R2, R2 tells us if an additional variable leads to a better fit.
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The residual standard error σresidual is

σresidual =

√√√√ 1
n− p

n∑
i=1

(yi − fi)2
. (7.10)

Here, the residual sum of squares is compared with the total number of regressors and the sample
size without comparing to the sample variances of the dependent variable. Therefore, the residual
standard error is a least square variance estimator similar to a standard deviation that includes the
number of regressors and shows the absolute scattering of the values.

The standard deviation according to the n−1 method is commonly used to estimate the standard
deviation for a sample and does not include the number of regressors in the linear model. It is
typically referred to as corrected sample standard deviation

σs =

√√√√ 1
n− 1

n∑
i=1

(yi − fi)2
. (7.11)

Is, however, the full population known, the standard deviation is given according to

σn =

√√√√ 1
n

n∑
i=1

(yi − fi)2
. (7.12)
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7.2.3 Choice of Model and Parameters
In doped ceria, numerous arrangements of cerium ions, dopants, oxygen ions and oxygen vacancies
are possible. The activation energies of oxygen migration in these numerous ionic configurations
can be predicted by creating a model for the migration energy. In this regard, the lattice sites,
whose occupation influences the migration energy, have to be identified and their influence has to
be quantified.

a) Centers of Interaction

According to Coulomb’s law, forces between charged particles depend on their distance. Therefore,
lattice sites in a sphere around the migrating oxygen ion are tested for their influence on the
migration energy. Since the migrating oxygen ion changes its position during a jump, the interaction
sphere can be expanded around the oxygen ion in the initial state, the transition state and the final
state. As defects are easier to track, interactions are labeled in accordance to the position of the
migrating oxygen vacancy in the start (s), center (c) or destination position (d) as shown in Fig. 7.12.

Figure 7.12: Centers of Interaction: start (s), center (c) and destination (d)

The energy of the initial and final state is obviously influenced by the distances of defects to
the migrating oxygen vacancy as shown by the association energy in Chapter 5.1. Since the migra-
tion energy is calculated as the energy difference between transition and initial state, one might
assume that spheres have to be expanded only around the start and center position (sc) as done in
literature. [37,54,287] Other models in literature feature only interactions around the center position
(c). [220,225]

However, the destination position may still be important: The ionic configuration of the whole
lattice in equilibrium can be calculated using Metropolis Monte Carlo simulations, which are based
on interactions around the start and destination position (cp. Chapter 4.2.2). According to theory,
Kinetic Monte Carlo simulations have to lead to the same ionic configuration of the whole lattice
in equilibrium. Although a sc model is sufficient to build an equivalent model, the resulting radius
of the sphere around the center position has to be larger than the radius of the sphere around
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the destination position. This highlights the benefit of the use of the destination position in the
migration energy model.

In fact, migration energies are calculated in literature using only the interactions around the start
and destination position (sd). [220,281] Other models feature interactions around all three positions
(scd). [55,224,284–286] In this work, models are compared featuring all three centers of interactions.

b) Grouping the Ions, Scaling their Influence

When all lattice sites, whose occupation influences the migration energy, have been identified, their
influence has to be quantified.

On each lattice site of rare-earth (RE) doped ceria either a host ion (Ce, O) or a defect (RE, V) is
positioned. For each additional lattice position, which is considered for the calculation, the number
of jump configurations multiplies by 2 leading to a total number of 2n jump configurations for n
influenced positions.

However, not every configuration is unique. For the 6-cation environment, the six nearest cation
sites around a jump can be occupied by either a Ce ion or a Sm dopant. The resulting number of
possible jump configurations is 26 = 64, which can be reduced to 30 unique jump environments by
using rotational symmetry around the jump axis.

First, the number of possible arrangements can be reduced
if configurations are symmetrically equivalent

and can be converted into each other.
Beyond that, several jump configurations (e.g. stereochemical configurations, see p. 139) are not

equivalent but similar in both geometry and migration energy. Still, the reduction of the number of
jump environments is limited. Including the next cation shell around start and destination position
already leads to about 106 jump configurations after symmetry considerations, which cannot be
calculated using DFT due to the vast computational demand.

If not every configuration should be calculated, it could be assumed that the influence of every
lattice site is independent of all other lattice sites. Therefore, for every lattice site a change in
migration energy could be quantified in case a dopant is present. This follows a pair interaction
model. Lattice sites featuring the same change in migration energy could be grouped. As a result,
the change in migration energy Eshell,i changes linearly with increasing number of defects on lattices
sites of the group N i

shell:

Eshell,i = N i
shell · Eishell (7.13)

This is called linear scaling.

If all ions are fixed at the positions of the ideal lattice, Coulomb’s law suggest that all lattice sites
with the same distance to the migrating oxygen ion can be grouped with linear scaling. Only the
distance to the start and destination position needs to be given to identify lattice sites of a group.
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The resulting groups for the cation sublattice are shown in Fig. 7.13 using different colors. Fig-
ure 7.14 shows groups in both cation (green) and anion sublattice (red) as a function of distance to
the migrating oxygen vacancy. Labels refer to the nearest neighborhood position before and after
a jump (e.g. 1NN→2NN). The distance axis position refers to the initial (start and destination) and
transition state (center) in an ideal lattice with experimental lattice parameter at room temperature.

Figure 7.13: Cation sublattice around an oxygen ion jump. Oxygen ion (red sphere), oxygen vacancy
(red box) and Cerium ions (all other spheres). Non-transparent ions with the same color possess
the same distance to the migrating oxygen ion in either the initial or final state.

Alternatively to the nearest neighborhood nomenclature, shells are consecutively numbered for
three spheres expanding around the initial and final position of the oxygen vacancy (start and des-
tination position) and the jump center. For this purpose, only either cation or anion interaction are
considered (cation or anion shell). If both sublattices are included, the total shell is given. Figure 7.14
shows that the 1st cation shell (1NN→1NN RE-V, 1st total shell) is centered at the jump center, while
the 1st cation shell (1NN→2,4NN V-V, 3rd total shell) is centered at the start and destination position.
It should be noted that all jump configurations according to the nearest neighborhood nomenclature
appear at least twice, as they can be centered at the start and destination position as well as the
jump center.1

1Jump configurations with different distances between the defect and the migrating oxygen
vacancy in the initial and the final state appear three times in Fig. 7.14 as the shell around the
start and destination position can be either left or reached during the jump. For the migration
energy model in this work, both references are merged in the first appearance.
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Figure 7.14: RE-V (green) and V-V interactions (red) that are considered, if spheres are expanded
around the start, destination (up) or center position (down). All interactions are labeled according
to their distance to the oxygen vacancy before and after the jump. For example, “1-1,2” refers
to 1NN→1NN and 1NN→2NN jumps, while “1-4;2-3” refers to 1NN→4NN and 2NN→3NN jumps.

However, in reality, a displacement of ions takes place, which is called relaxation. Therefore, the
influence of lattice sites can dependent on other lattice sites. This is, for example, the case when
multiple defects form a cluster, which influences the migration energy differently than the separate
defects. Nevertheless, the migration energy can still be modeled if lattice sites can be grouped and
the change in migration energy depends on the total number of defects in the group. The change
is not proportional to the number of defects but for every number of defects a change in migration
energy is defined, e.g. for a group with two lattice sites the migration energy contribution is

E∗shell,i =


E0
shell,i for 0 defects

E1
shell,i for 1 defect

E2
shell,i for 2 defects

. (7.14)

This is called categorical scaling.

Lattice positions can be possibly grouped if they have
the same distance to the start, center or destination position.

c) Calculating the Migration Energy based on Groups

If the influence of each group on the migration energy is known, these influences have to be added
up to calculate the migration energy. The migration energy is then given by the migration energy
in the pure material and the sum of the migration energy changes caused by the different groups.

For a better understanding, the migration energy changes can be classified as symmetric and
asymmetric contributions (Fig. 7.15). Symmetric influences are characterized by changes in the
migration energy, which are independent of the jump direction. Typically, configurations, which are
geometrically symmetric around the jump center, feature symmetric influences.
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Figure 7.15: Migration energy model.

Asymmetric influences define the difference in migration energy between a forward and backward
jump. The difference between forward and backward jump Emig,forw. − Emig,backw. = ∆Econf is
given by the configurational energy difference between final and initial state, which can be modeled
according to Eq. 4.15. Therefore, the difference of influences between start and destination position
could be used according to

E∆shell,i =
(
N i

shell,destination −N i
shell,start

)
· Ei∆shell (7.15)

where the energy parameter for linear scaling groups near the start and destination position have
equal value with opposite sign. Here, a linear interpolation between the energies of the initial and
final state is assumed, which is common in literature. [423,424] Alternatively, a polynomial function
for a better emulation of the assumed Coulomb potential between to defects or sinusoidal shaped
migration barriers can be introduced. [373]

While geometrically symmetric configurations generally feature symmetric influences, geometri-
cally asymmetric configurations can be influenced by both asymmetric and symmetric contributions.

The migration energy is then given by the sum of symmetric and asymmetric contributions. The
interpretation of both contributions is straightforward: Positive symmetric contributions increase the
migration energy for both forward and backward jump. While the equilibrium defect distribution
is independent of these symmetric contributions, oxygen vacancies are kinetically hindered and
therefore blocked (Blocking). Positive asymmetric contributions lead to large migration barrier for
the forward jump but small migration barrier for the backward jump. The defect distribution is
significantly influenced. Vacancies appear more often in nearest neighborhood to the defect because
they are trapped (Trapping). Both effects are used to describe the experimental ionic conductivity
as discussed in Chapter 2.5.1.

In this work, energy parameters are derived from a fit of a model to a large number of configu-
rations to estimate the quality of the model. Subsequently, intuitive energy parameters are derived
from as few jump configurations as possible. In this way, not only the quality of the model but also
its capability of prediction is investigated.

Furthermore, correlations of asymmetric contributions with the configurational energy are inves-
tigated. Therefore, the question of termination (see Chapter 5.1.1) is again discussed.
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d) Interaction Radius

A model for the migration energy should predict the migration energies accurately with as few
parameters as possible. Therefore, the interaction radius of the spheres around start and destination
position as well as the sphere around the center position should be reduced to a minimum.

An increasing number of parameters in a regression leads to a better fit of the data. However, if this
estimated function is used to predict new data, an improvement or a deterioration of adaptation
is revealed. If the model is too complex, the prediction of new data is poor. In addition, small
improvements of the fit can be waived if thereby substantial computational “costs” can be saved.
Furthermore, a low number of parameters eases the understanding of the migration energy model.

The interaction radius determines which lattice sites are investigated for their occupation before
and after a jump. Interactions are introduced successively according to Fig. 7.14. In case of a sphere
around the start position with an interaction radius of 2.34 Å, four cation lattice sites (1NN RE-V)
are taken into consideration for the migration energy. Two of these cations have the same distance
to the oxygen vacancy after the jump (1NN↔1NN), while the other two (1NN↔2NN) are on the
next nearest neighbor cation position to the oxygen vacancy destination (4.48 Å, 2NN RE-V). If an
interaction radius of 2.34 Å around the start position is used, both of these interactions are treated
equally: For example, before the oxygen jump, a 1NN RE-V interaction might be detected. After
the jump, no interactions are considered. Using an additional interaction sphere of 2.34 Å around
the destination position detects the 1NN↔1NN cation position, while the 1NN↔2NN cation position
cannot be distinguished from any other 1NN↔xNN interaction. Since in the fluorite structure only
these jump configurations starting from 1NN exist, all interactions are separated. In contrast, for an
interaction radius of 4.48 Å around start and destination position, 2NN↔3NN and 2NN↔4NN RE-V
jumps cannot be distinguished.
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Figure 7.16: Migration energies in a 3 × 3 × 3 supercell with a dopant and a migrating oxygen
vacancy.

The interaction radius should be chosen so that defects placed outside of the interaction range
have a negligible influence on the migration energy. As a first approximation, the association energy
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can be used (Chapter 4.2.1 and 5.1). Another argument is shown in Fig. 7.16, where the migration
energies in a 3× 3× 3 supercell with a dopant and a migrating oxygen vacancy are shown. As the
oxygen vacancy jumps away from the defect, the migration energy approaches the migration energy
in pure ceria.

The above-described approach to model the migration energy is in literature often referred to
as cluster expansion. [373,423–426] Similar to this work, groups are formed according to space group
symmetry of the crystal (asymmetric contributions for the configurational energy) and the highest
coherent point group that maps the cluster onto itself (local cluster expansion). Often, groups
scale linearly and the possibility of categorical scaling is neglected. Parameters are called effective
cluster interactions and are often determined by a fit of several ionic configurations with several
defects. Therefore, the scaling is not systematically verified and insights into the significance of the
parameters are limited.

In the following, the scaling of various groups and possible models are investigated. At first, only
the influence of rare-earth dopants on the migration energy is examined. Then, the influence of
oxygen vacancies on the migrating oxygen ion is discussed. Finally, migration energies of super-
cells containing defects in both sublattices are presented in order to verify that influences of both
sublattices can be calculated separately.

Migration energies were calculated in different supercell sizes. The migration energy depends
strongly on the supercell size due to elastic effects and interaction of the migrating oxygen ion with
itself as discussed above. Since not all jump configurations were calculated in different supercell
sizes, all given migration energies belong to a 3× 3× 3 supercell, unless otherwise denoted.
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7.2.4 Influence of Dopants on a Jump

1NN↔1NN Scaling: Ce-Ce, Ce-RE or RE-RE Edge?

< <

For three spheres expanding around the initial and final
position of the oxygen vacancy (start and destination po-
sition) and the jump center, the first interaction in the
cation sublattice includes two dopants near the jump center. This 1st shell has a 1NN interaction to
both initial and final position of the oxygen vacancy and could, therefore, be grouped as 1NN↔1NN

RE-V jump configuration centered at the jump center.

As mentioned before, doping the 1st shell leads to the three edge configurations. While the Ce-Ce
edge has a migration edge energy of 0.482 eV for the 3 × 3 × 3 supercell, the migration energy
increases to 0.649 eV (+0.17 eV/dopant) for the Ce-Sm edge and 1.049 eV for the Sm-Sm edge,
which is an increase of 0.40 eV compared to the Ce-Sm edge (Fig. 7.17). For Y doped ceria, the
increase is smaller with +0.07 for the first and +0.26 eV for the second dopant. The increase in
migration energy per dopant is not constant. Therefore, all three edge configurations have to be
calculated. The 1st shell group scales categorical.
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Figure 7.17: Migration energy for different number of dopants at the migration edge. Beside the
migrating oxygen vacancy, no other defect is present. Sm and Y doped ceria in 3×3×3 supercell.

For different rare-earth dopants, the migration edge energies increase nearly linearly with increas-
ing ionic radius of the dopant as already shown in Fig. 7.6.

For a valid grouping, all jump configurations containing one or two dopants at the migration
edge (1st shell) have to increase with the same value independent of the occupation of the 2nd shell.
Figure 7.18 shows the increase in migration energy is similar for all configurations of the 6-cation
environment.
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Figure 7.18: Migration energy for different numbers of dopants at the migration edge with varying
dopants in the 2nd shell. 3× 3× 3 supercell.

For Sm doped ceria, the migration energy increases for 0 to 1 dopants by 0.14(1) eV and for 1 to
2 dopants by 0.36(3) eV. For Y doped ceria, the migration energy increases for 0 to 1 dopants by
0.05(1) eV and for 1 to 2 dopants by 0.25(1) eV. Therefore, the average increase in migration energy
is small compared to the edge configurations for Sm doped ceria while the increase is comparable in
Y doped ceria. Still, grouping the 1NN↔1NN RE-V jump configuration is a valid approach.

The migration energy increases categorically
with increasing number of dopants at the migration edge.

1NN↔2NN Scaling: Jumping to or from a Dopant?

< <

For three spheres expanding around the start and desti-
nation position and the jump center, the second cation
interaction shell includes four dopants near the start and
four dopants near the destination position. Two dopants each have the same distance to the start
and destination position and correspond to the 1st shell for the cation sublattice (1NN↔1NN). The
other two dopants near the start position could be grouped as 1NN→2NN. The other two dopants
near the destination position could be grouped as 2NN→1NN. Contrary to the 1st shell, the 2nd shell
is centered at the start and destination position. If jumps are labeled using shells instead of nearest
neighbor interactions, jumps occur between the 2nd↔5th cation shell around start and destination
position or the 2nd↔9th total shell if both sublattices are included.

Including interactions up to the 2nd shell already includes all 1NN↔2NN jump configurations since
no other jumps starting from 1NN besides 1NN↔1NN are possible due to symmetry reasons.

In contrast to the edge configurations, the migration energy of the 1NN↔2NN jump configuration
increases nearly linearly with increasing number of dopants at the start position and decreases
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Figure 7.19: Migration energy for different numbers of dopants near the start (1NN↔2NN) or desti-
nation position (2NN↔1NN) of the migrating oxygen. No other defect is present. Sm and Y doped
ceria in 3× 3× 3 supercell.

linearly with increasing number of dopants at the destination position (Fig. 7.19).

For Sm doped ceria, the migration energy increases by 0.007(1) eV or decreases by −0.066(2) eV
per dopant. For Y doped ceria, the migration energy increases by 0.08(1) eV or decreases by
−0.14(1) eV per dopant. Instead of considering the migration energy change per dopant at ei-
ther start or destination position, the difference between both migration energy changes can be
calculated. This energy difference of the change in migration energy is equivalent to the difference
in migration energy between forward and backward jump per dopant. Generally, the difference in
migration energy between forward and backward jump is equivalent to the difference in total energy
of the initial and final state, which is, of course, the difference in 2NN and 1NN association energy.
The difference between increase and decrease in migration energy is 0.073(2) eV for Sm doped ceria
and 0.2122(3) eV for Y doped ceria. For Y doped ceria, this average association energy difference
scatters less than the average increase or decrease in migration energy. For the 3×3×3 supercell and
a single dopant, Fig. 5.1 gives ∆Econf with 0.075 eV for Sm doped ceria and 0.2119 eV for Y doped
ceria. For the infinitely large supercell, the values are similar. The good agreement validates the
use of a pair interaction model for the configurational energies. Because of the agreement between
asymmetric contribution and association energy difference, for small dopants the migration energies
are larger for 1NN→2NN than 2NN→1NN, similar for Nd doped ceria and smaller for 1NN→2NN than
2NN→1NN for La doped ceria.

Again, for a valid grouping, all jump configurations containing one or two dopants at 1NN↔2NN

have to change with the same value. In the following, again different ionic configurations from the
6-cation environment are compared with varying occupation of other lattice sites.

Dopants at the start position (Fig. 7.20a and 7.20b) lead to both an in- and decrease in migration
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Figure 7.20: Migration energy for different numbers of dopants near the start (upper row, 1NN↔2NN)
and the destination position (lower row, 2NN↔1NN) of the migrating oxygen. Other defects are
present. 3× 3× 3 supercell.

energy for additional dopants in Sm doped ceria (−0.003(8) eV) and only increase in migration energy
for Y doped ceria (0.07(2) eV). The reason for this different behavior is based on the symmetric
influence of the 2nd↔5th cation shell (1NN↔2NN RE-V), which is investigated further below. If this
symmetric influence is considered, the migration energy increases linearly with increasing number
of dopants at the start position for both Sm and Y doped ceria.

Dopants at the destination position (Fig. 7.20c and 7.20d) lead clearly to a decrease in migration
energy for additional dopants in both Sm (−0.09(2) eV) and Y doped ceria (−0.14(2) eV). The con-
tributions are larger for Y doped ceria due to the higher association between dopant and vacancies.
For both Sm and Y doped ceria, the average change in migration energy is again small compared
to the configurations containing only defects at 1NN↔2NN.
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7.2 Modeling the Migration Energy

The migration energy increases linearly
with increasing number of dopants at the start position and

decreases linearly with increasing number of dopants
at the destination position.

Therefore the 1NN↔1NN and 1NN↔2NN groups scale differently: The edge group scales categorical:
All different numbers of dopants have to be calculated. The 1NN↔2NN group, on the other hand,
scales linearly: Calculating a single dopant at the start and destination position reveals the change
of migration energy for more dopants. For both groups, the influence of single dopants differs slightly
from the average change in migration energy.

In literature, the 1NN↔2NN group is linked to trapping effects. In this work, both asymmetric
and symmetric contributions were found. Therefore, the 1NN↔2NN group causes both trapping and
blocking behavior. The latter is for Sm doped ceria negative.

1NN↔2NN Stereochemistry

≈
If dopants are grouped according to 1NN↔2NN, only the numbers of
dopants at start and destination position are registered. If both at
start and destination position one dopant is present, two geometri-
cally possible jump configurations still exist. For a valid grouping, both jump configurations should
have the same migration energy.

In this work, configurations like this are called stereochemical. Here, the same number of dopants
is present in different groups, but the configurations cannot be transformed into one another using
symmetry operations. For the 6-cation environment, the stereochemical configurations are OZO,
OOO and OTO.

The deviation in migration energy between stereochemical configurations is small, e.g. for Sm
doped ceria 0.001 eV and for Y doped ceria 0.015 eV. Therefore, grouping according to 1NN↔2NN is
possible since the deviations are negligible.

1NN↔2NN: Asymmetric Dopant Configurations and their Symmetric Influence

<
The 1NN↔2NN jump can be interpreted as a jump between the
2nd↔5th cation shell around the start or the destination position
(Fig. 7.21). Alternatively, all four cation sites also add up to the
3rd cation shell or 5th total shell, if both sublattices are included. The 3rd cation shell is centered at
the jump center.

Therefore, the four cation sites can be considered both as an asymmetric and symmetric influence.
In this work, (energetically) asymmetric influences are characterized by changes in the migration
energy with a similar amount for dopants near the start and destination position but with a different
sign. A configuration would be purely asymmetric if a dopant in 1NN→2NN increases the migration
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Figure 7.21: RE-V (green) and V-V interactions (red). The asymmetric and symmetric influence of
the 1NN↔2NN jump is marked.

energy by 0.01 eV and a dopant in 2NN→1NN decreases the migration energy by −0.01 eV. Symmetric
influences are characterized by changes in the migration energy, which are independent of the jump
direction. Typically, configurations, which are geometrically symmetric around the jump center,
feature also symmetric influences. For doped ceria, e.g. the 1NN↔1NN configuration is symmetric.

While geometrically symmetric configurations generally feature symmetric influences, geometri-
cally asymmetric configurations can be influence by both asymmetric and symmetric contributions.
As discussed, the 1NN↔2NN configuration in doped ceria features both asymmetric and symmetric
contributions. This can be seen in Fig. 7.19 by investigating the average migration energy of two
jump configurations with a similar number of dopants at start and destination position, respec-
tively. Purely asymmetric configurations should show a constant average. As this is not the case
for Fig. 7.19, the average shows the symmetrical contributions. For Sm doped ceria, the average
decreases linearly with −0.03 eV per dopant. For Y doped ceria, the average is constant at −0.04 eV
for both one and two dopants.

The symmetric influence can be investigated by projecting the energy for an oxygen ion jump
relative to the transition state (TS) as shown in Fig. 7.22.

Comparing the contributions from different edge configurations in of Fig. 7.22, the following
becomes evident: For Sm doped ceria in a 3 × 3 × 3 supercell, the migration energy difference
between the forward and backward jump is about −0.07 eV for the Ce-Ce edge, −0.08 eV for the
Ce-Sm edge and between −0.09 eV and −0.11 eV for the Sm-Sm edge per dopant difference between
start and destination. For Y doped ceria in a 3 × 3 × 3 supercell, the difference is about −0.21 eV
for the Ce-Ce and Ce-Y edge and between −0.21 eV and −0.23 eV for the Y-Y edge per dopant
difference between start and destination. Thus, the difference between the forward and backward
jump is smaller for Sm than for Y, caused by their different association energies, and the difference
increases with more dopants at the migration edge, similar to the migration energy of the edge
configurations itself.

Comparing the different configurations within one edge configuration, the following becomes
evident: The connecting lines between initial and final state appear in a strict sequence at the
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Figure 7.22: Initial and final state energy for an oxygen ion jump relative to the transition state
energy. Sm (left) and Y doped ceria (right) in 3× 3× 3 supercell. If only the difference between
dopants near start and destination of the oxygen vacancy is relevant, all lines connecting initial
and final state should intersect at TS. Lines are a guide to the eye only.
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transition state. Their value increases with the number of dopants at either start or destination.
This means Z*Z has the largest migration energies for forward and backward jump followed by O*Z,
the configurations T*Z and O*O which are often similar, T*O and finally T*T. The only exception
is the Ce-Ce edge for Y doped ceria where OZZ and TZZ are similar. The same sequence can be
found in the 2× 2× 2 supercell. Therefore, it is obvious:

The migration energy decreases with increasing number of dopants
at both the start and destination position.

< <

The decreases in migration energy can clearly be seen
in Fig. 7.23, where similar migration configurations are
grouped and shown with increasing numbers of dopants
near both start and destination position. Again, the influences increase with increasing number of
dopants at the migration edge similar the edge energy itself. For Sm doped ceria, the migration
energy decreases by −0.06 eV±0.005 eV for the Ce-Ce edge, by −0.08 eV±0.004 eV for the Ce-
Sm edge and by −0.13 eV±0.01 eV for the Sm-Sm edge. For Y doped ceria, the migration energy
decreases by −0.05(1) eV for the Ce-Ce edge, by −0.07(1) eV for the Ce-Y edge and by −0.08(1) eV
for the Y-Y edge.
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Figure 7.23: Migration energy for different numbers of dopants near both start and destination
position (1NN↔2NN and 2NN↔1NN) of the migrating oxygen. Other defects are present. 3× 3× 3
supercell.

If the change in migration energy with increasing number of dopants scales linearly for start and
destination position and their average, asymmetric and symmetric influences scale linearly as well.
This is the case for the 1NN↔2NN configuration. The average decreases by −0.030(2) eV for Sm and
−0.03(1) eV per dopant for Y doped ceria.
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1NN↔1,2NN: Modeling & Determining Model Parameters using Fitting and an
Educated Guess

As a next step, a model for the migration energy is constructed. Instead of using all 30 possible
configurations for the 6-cation environment, a migration energy model should be calculated as a
function of the number of dopants in the groups and add up their influences. For the 6-cation
environment, the 1st, 2nd↔5th and 3rd cation shell were already introduced as possible groups and
their scaling has been classified as categorically or linearly above. On this basis, three possible models
are introduced in the following. Model and DFT migration energies are shown in Fig. 7.24. The left
and right graph use identical models with different parameter values. While the left graph indicates
the quality of the model, the right graph illustrates how well the model can predict migration
energies using only a few calculations.

Introducing the models As a first try, the three possible migration edge configurations of the
1st shell and their categorical scaling can be used. The resulting model features 3 parameters:

Emig = E∗shell, 1

=


E1, Ce-Ce
shell for N1

shell = 0
E1, Ce-RE
shell for N1

shell = 1
E1, RE-RE
shell for N1

shell = 2

where E∗shell, 1 is the migration energy of the edge configuration, which is defined categorical for
the number of dopants N i

shell in the ith total shell. A model that uses the 1st total shell, which is
centered at the jump center, is called “c1”. Fig. 7.24 shows that a variety of DFT migration energies
is labeled with the Ce-Ce, Ce-Sm or Sm-Sm edge. A model that uses only the 1st total shell is
therefore not a sufficient model.

The model can be improved by increasing the interaction radius. The next shell includes the
jump configuration 2nd↔5th cation shell, which increases or decreases the migration energy linearly
for dopants near the start or destination position. As both positions affect the migration energy, a
model based on equal interaction radii for start and destination is used. There are two possibilities
to include the 2nd↔5th cation shell.

On the one hand, the difference between the number of dopants on the 2nd→5th and
5th→2nd cation shell can be used. Here only asymmetric contributions for the 2nd↔5th cation
shell are considered. The resulting model features 4 parameters.

Emig = E∗shell, 1 + E∆shell, 2

=


E1, Ce-Ce
shell for N1

shell = 0
E1, Ce-RE
shell for N1

shell = 1
E1, RE-RE
shell for N1

shell = 2

+
(
N2

shell,destination −N2
shell,start

)
· E2

∆shell

with the linear energy-contribution of the ith total shell as difference between backward and forward
contribution E∆shell, i defined by the number of dopants N i

shell,j in the ith total shell near the j-
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position (start or destination) and the energy parameter per dopant difference between destination
and start position Ei∆shell.1 Energy contributions using the difference between the number of dopants
between destination and start position are called “sd [ds]”. From Fig. 7.15 it is obvious that theses
asymmetric contributions are connected with half of the change in energy between initial and final
state, which can be described as association energy difference. Figure 7.24 suggests an acceptable
difference between model and DFT migration energies. Therewith, the migration energies for the
6-cation environment could be modeled using the 4 parameters model.

On the other hand, the number of dopants on the 2nd→5th cation shell and the 5th→2nd cation
shell can be used separately with the linear energy-contributions Eshell, 2(start) and Eshell, 2(destination).
A mathematical equivalent description for this is the following: Not only the difference between the
number of dopants on the 2nd→5th and 5th→2nd cation shell is considered (asymmetric contribution)
but also the total number of dopants near start and destination position (symmetric contribution).
The resulting model features 5 parameters.

Emig = E∗shell, 1 + E∆shell, 2 + Eshell, 5(center)

=


E1, Ce-Ce
shell for N1

shell = 0
E1, Ce-RE
shell for N1

shell = 1
E1, RE-RE
shell for N1

shell = 2

+
(
N2

shell,destination −N2
shell,start

)
· E2

∆shell +N5
shell · E5

shell

with the linear energy-contribution of the ith total shell around the j-position Eshell, i(j) determined
by the number of dopants N i

shell in the ith total shell and the energy parameter per dopant Eishell.
Energy contributions using the number of dopants in the 5th total shell, which is centered at the
jump center, are called “c5”. Energy contributions using the number of dopants near the destination
position and near the start position separately are called “sd [s,d]”. Compared to the 4 parameters
model, the differences between model and DFT migration energies are significantly reduced for the
5 parameters model (Fig. 7.24). For a large number of defects, the model predicts larger migration
energies than found by the DFT calculations. Here, local relaxations of the lattice positions of the
ions can decrease the activation barrier.

An overview of the models is shown in Table 7.7.

number of parameters Emig =

3 E∗shell, 1

4 E∗shell, 1 + E∆shell, 2

5 [ds] E∗shell, 1 + E∆shell, 2 + Eshell, 5(center)

5 [s,d] E∗shell, 1 + Eshell, 2(start) + Eshell, 2(destination)

Table 7.7: Migration energy models for 6-cation environment including start and destination equally.

1Instead of a model based on linear interpolation of the site energies, sinusoidal shaped
migration barriers can be introduced. [373]
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While the number of parameters is useful to distinguish the different models here, in general the
type of the model and its interaction radius is specified. The type of the model denominates the
positions around which spheres are expanded for the model, i.e. start (s), center (c) and destination
(d). If only specific spheres around the center are used, they can be denominated separately, e.g.
c1 or c1+c5. For spheres around start and destination position, again [ds] refers to the difference
between the number of dopants near the start and destination position while [s,d] uses the number
of dopants separately. The interaction radius determines how large the expanded spheres are or
whether specific spheres are activated. A comparison between the general nomenclature and the
number of parameters is shown in Table 7.8.

RE-V interaction radius c1+sd [ds] scd [ds] scd [s,d] c1+sd [s,d]

1.91 Å 3 3 3 3
2.34 Å 4 4 5 [s,d] 5 [s,d]

3.31 Å 4 5 [ds] 5 [s,d]

Table 7.8: Number of parameters of migration energy models for 6-cation environment.

Table 7.8 illustrates that all models are similar for a 1NN RE-V interaction radius of 1.91 Å. The
c1+sd [ds] and scd [ds] model differ at a 3NN RE-V interaction radius of 3.31 Å since the c5

interaction is not included in both models. The scd [s,d] model could have 6 parameters at a 3NN

RE-V interaction radius. However, the additional parameter is not defined because of singularities
(see Chapter 7.2.1). The number of parameters increases differently in the models, especially [s,d]

models gain parameters more quickly than [ds] models.

Validating the models The models may be applied if they reflect the behavior of the DFT
energies. The models can be fitted to the DFT energies in order to achieve the lowest possible
differences between model and DFT migration energies. This reveals the quality of the models.

The fits are shown in Fig. 7.24 (left). The results of the fit are evaluated using the adjusted R2

and residual standard error σresidual according to Chapter 7.2.2. For the 6-cation environment, both
are shown in Fig. 7.25.

For 30 parameters, the migration energy of every configuration is specified in the model leading
to a perfect fit between model and DFT calculations, which is shown in Fig. 7.24 (left) by a line
that bisects the x- and y-axis. However, a reduced number of parameters is desirable.

The 4-parameters model shows a good regression result. The residual standard error and σn is
below 0.06 (see Fig. 7.25); model and DFT migration energies are similar. Including the 3rd cation
shell (5 parameters model) leads to an even better fit, the residual standard error and σn is below
0.02 and R̄2 improves significantly.

145



7 Activation Energy

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 20 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

S m - S m  e d g e

C e - S m  e d g e

F i t t e d  p a r a m e t e r s

 3 0  p a r a m e t e r s
 5  p a r a m e t e r s
 4  p a r a m e t e r s

mo
de

l m
igr

ati
on

 en
erg

y (
eV

)

D F T  m i g r a t i o n  e n e r g y  ( e V )

C e - C e  e d g e

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 20 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

 3 0  p a r a m e t e r s
 5  p a r a m e t e r s
 4  p a r a m e t e r s

mo
de

l m
igr

ati
on

 en
erg

y (
eV

)

D F T  m i g r a t i o n  e n e r g y  ( e V )

I n t u i t i v e  p a r a m e t e r s

C e - C e  e d g e

C e - S m  e d g e

S m - S m  e d g e

Figure 7.24: Model (see Table 7.7) and DFT migration energies for 6-cation environment with
fitted (left) and intuitive parameters (right). The left and right graph use identical models with
different parameter values. While the left graph indicates the quality of the model, the right
graph illustrates how well the model can predict migration energies using only a few calculations.
Intuitive parameters for the infinite supercell. DFT energies for Sm doped ceria in 3 × 3 × 3
supercell.
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Figure 7.25: R̄2 and standard derivation for different models in 6-cation environment. Sm doped
ceria in 3× 3× 3 supercell.

Determining model parameters To gain deeper insight into the migration energy, a 4 or
5 parameters model can be fitted to the 30 DFT migration energies. As a result, influences on the
migration energy are revealed and can be further studied by varying few parameters. However, for
a larger number of possible configurations, not every configuration can be calculated. Therefore, it
is desirable to determine parameter using only a few calculations. An educated guess allows the use
of intuitive parameters, which identify the influences on the migration energy.

It is assumed that isolated defects from configurations with only a few dopants in the infinitely
large supercell can be used to predict the parameters of the models. According to the investigations
of possible groups above, this approach is valid: For dopants in the 1NN↔1NN group, the general
increase in the 6-cation environment was 0.14 and 0.36 eV for 0 to 1 and 1 to 2 dopants, which
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7.2 Modeling the Migration Energy

is similar to the increase in the infinitely large supercell with 0.164 and 0.401 eV as shown in
Fig. 7.6. For dopants in the 1NN↔2NN group, the general difference between in- and decrease in
the 6-cation environment was 0.073 eV, which is equal to the difference of the 1NN and 2NN RE-V
association energy in the infinitely large supercell as shown in Fig. 5.1. Therewith, the following
intuitive parameters are chosen.

E1, Ce-Ce
shell = Emig (ZZZ) , E1, Ce-RE

shell = Emig (ZOZ) , E1, RE-RE
shell = Emig (ZTZ) ,

E2
∆shell = Emig (OZZ)− Emig (ZZO)

2 and

E5
shell = Emig (OZZ)− Emig (ZZO)− Emig (OZZ)

2 − Emig (ZZZ) .

For E∗shell, 1 intuitive parameters are shown in Fig. 7.6. It may be noted that for asymmetric contri-
butions Ei∆shell directly half the association energy difference is used (Fig. 5.1 and 5.5) as shown in
Fig. 7.15. The resulting migration energies are shown in Fig. 7.24 (right). The models use intuitive
parameters from the infinitely large supercell (σn = 0.061 and 0.041 for 4 and 5 parameters model,
respectively) though values are compared with the DFT energies for Sm doped ceria in a 3× 3× 3
supercell. Intuitive parameters from the infinitely large supercell are used as it is assumed that
isolated defects are best for a multiple linear scaling of the migration energy. The DFT energies in a
3× 3× 3 supercell are used, as experimental defect concentrations are high. The 3× 3× 3 supercell
provides the best balance between reasonable concentrations and a limited amount of interactions
of the defects and their copies due to periodic boundary conditions. For comparison, Fig. 9.8 in the
appendix shows the model using intuitive parameters from the 3× 3× 3 supercell (σn = 0.062 and
0.036 for 4 and 5 parameters model, respectively).

The prediction for both the 4 and 5 parameters model are acceptable. Therefore, the intuitive
parameters from about 4–5 calculations can be successfully used to estimate the fitted parameters.

Using the existing 3 and 4 parameters model with intuitive parameters for the infinitely large
supercell, the ionic conductivity for Sm doped ceria can already be simulated (see Chapter 7.3).

Y doped ceria For Y doped ceria, the results are similar (Fig. 7.26). The quality of the models
is high as the adjusted R̄2 and standard derivation show a good regression (Fig. 7.27). The residual
standard error and σn is below 0.05 and 0.02 for 4 and 5 parameters model, respectively.1 Both
values are lower than the residual standard errors for Sm doped ceria. Therefore, the quality of the
models for the migration energy is better for Y than Sm doped ceria.

For intuitive parameters from the infinitely large supercell, the σn is 0.047 and 0.020 for 4 and
5 parameters model, respectively. For intuitive parameters from the 3× 3× 3 supercell, the residual
standard error is σn = 0.046 and 0.018 for 4 and 5 parameters model, respectively. Again, all

1σn = 0.045 and 0.014 for 4 and 5 parameters model, respectively.
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Figure 7.26: Model (see Table 7.7) and DFT migration energies for 6-cation environment with
fitted (left) and intuitive parameters (right). Intuitive parameters for the infinite supercell. DFT
energies for Y doped ceria in 3× 3× 3 supercell.
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Figure 7.27: R̄2 and standard derivation for different models in 6-cation environment. Y doped ceria
in 3× 3× 3 supercell.

residual standard error for the intuitive parameter are low compared to Sm doped ceria. Therefore,
the prediction of migration energies is better for Y than Sm doped ceria.

This is surprising, as the standard derivation for the linearly scaling in Y doped ceria was high
compared to Sm doped ceria. The quality of the linear scaling is therefore only partly responsible
for the quality of the models. The summation of additive influences for complex ionic configurations
with several defects leads obviously to better results for Y doped ceria for the 6-cation environment.
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7.2 Modeling the Migration Energy

1NN↔1,2NN: The Models for Different Supercell Sizes

Up to now, it has been assumed that isolated defects from the infinitely large supercell are best
to predict the parameters of the models. However, in the last section lower values for σn could be
achieved by using intuitive parameters from the 3 × 3 × 3 supercell. Therefore, the question arises
which supercell size should be used.

Intuitive parameters from infinitely large supercells Following the latter argument,
intuitive parameters would be chosen best from their own supercell size. Figure 7.28 shows DFT
and model migration energies. Points are labeled with both the supercell size for DFT calculations
and the supercell size, which the intuitive parameters are chosen from.
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Figure 7.28: 4 parameters model (c1+sd [ds] up to 2NN RE-V) for 6-cation environment. DFT
migration energies in Sm doped ceria for the infinite large, 3 × 3× 3 and 2× 2 × 2 supercell as
well as intuitive parameters chosen from the corresponding supercell size as described in the last
section.

The goodness of fit is quite different here for different supercell sizes. With increasing supercell
size σn decreases from 0.116 to 0.085 and 0.072. More importantly, for infinitely large supercells the
best intuitive parameters are chosen from the infinitely large supercell. Using intuitive parameters
from the 3 × 3 × 3 supercell, e.g. by horizontal displacement of the points labeled with 3 × 3 × 3,
would lead to larger differences between model and DFT migration energies.

A migration energy model is desired that is best suited for the infinitely large supercell. In a real
solid, no interactions of defects and their copies due to periodic boundary conditions take place,
which is best represented by the DFT calculation from the infinitely large supercell.

Therefore, it is valid to choose intuitive parameters from the infinitely large supercell. If in the last
section the difference between DFT migration energies from the infinitely large supercell and model
migration energies with intuitive parameters from the infinitely large supercell had been compared,
all σn values would have been lower. DFT migration energies from the 3× 3× 3 supercell are used

149



7 Activation Energy

so that a large number of ionic configurations even at experimental defect concentrations can be
compared.

Models most valid for infinitely large supercells This investigation also suggests that
DFT migration energies from the infinitely large supercell can be better fitted to the proposed
models. Indeed, while the adjusted R̄2 for the fit of 3× 3× 3 supercell calculations is 0.9028, 0.9324
and 0.9927 for the 3, 4 and 5 parameters model, respectively, it is 0.9233, 0.9543 and 0.9941 for
DFT migration energies from the infinitely large supercell.

Especially the symmetric contribution for the 3rd cation shell increases for the 2×2×2 supercell,
obviously caused by the interactions due to the periodic boundary conditions. By implication, the
symmetric contribution for the 3rd cation shell is low for the infinitely large supercell. For the fit of
the 5 parameters model to the infinitely large supercell, E5

shell is −0.036 eV for Sm and −0.029 eV
for Y doped ceria. This also validates the use of the 4 parameters model.

Nd, Sc, Gd and La doped ceria In the 2 × 2 × 2 supercell, also Nd and Sc doped ceria1

have been investigated in an earlier work [1] and migration energies for Gd and La doped ceria were
calculated by Rachid Touzani. The residual standard error for the models fitted to the 2 × 2 × 2
DFT calculations indicated a quality for the models for Nd and Gd doped ceria similar to Sm doped
ceria. La doped ceria can only be described well using the 5 parameters model. The change in sign
for E2

∆shell, which was already anticipated in Chapter 5.1.1, is obviously not the only change in
behavior for La doped ceria due to its large ionic radius. For Sc doped ceria, the residual standard
error is above 0.12 for all models. As the solubility of Sc doped ceria is low, this deviation is expected.
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Figure 7.29: Semiempirical [282,283] and DFT migration energies in La doped ceria for the 4×4×4 and
2× 2× 2 supercell, respectively. The three selected interatomic potentials are labeled. [232,386,427]

1For Sc doped ceria, the NEB method with three intermediary images has been used. Not all
configurations in the 6-cation environment could be calculated successfully.
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7.2 Modeling the Migration Energy

Comparison to semiempirical migration energies For La doped ceria, Oaks et al. [282,283]

have calculated all possible migration configurations in the 6-cation environment using semiempirical
calculations with three selected interatomic potentials. [232,386,427] The migration energies strongly
depend on the interatomic potentials. Correspondingly, the correlation between DFT and semiempir-
ical migration energies is quite bad (Fig. 7.29). Especially, the jump configurations ZOO and ZTZ
(La-La edge) deviate significantly from general trend between semiempirical and DFT migration
energies.

An interesting historical side note is the comparison of the here calculated DFT migration energies
with the semiempirical migration energies from Murray, [41] which are the first migration energies
calculated for every possible configuration in the 6-cation environment. The results are compared
for Y doped ceria in 2× 2× 2 supercell in Fig. 7.30 (left).
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Figure 7.30: Migration energies according to Murray, [41] DFT and model migration energies. The
models are based on intuitive parameters from the Murray migration energies in the 6-cation
environment. Y doped ceria in 2× 2× 2 supercell.

The correlation between DFT and semiempirical migration energies is good. Murray overesti-
mated the migration energies for most configurations. Especially, the jump configuration TTT devi-
ates significantly from general trend between semiempirical and DFT migration energies. Figure 7.30
(right) indicates where the proposed models can also predict the semiempirical migration energies
from Murray using intuitive parameters from the semiempirical calculations. If the TTT configu-
ration is excluded, σn is 0.189, 0.112 and 0.110 for the 3, 4 and 5 parameters models, respectively.
These values are significantly higher than for the DFT calculations in the 2 × 2 × 2 supercell with
intuitive parameters from the same supercell. Here are the values for all configurations, σn = 0.129,
0.060 and 0.019 for the 3, 4 and 5 parameters models, respectively. As the correlation between both
calculations is good, this difference in model quality can be interpreted as a sign for the high quality
of the DFT calculations.
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2NN↔2NN

vs. vs.

For three spheres expanding around the initial and final
position of the oxygen vacancy (start and destination po-
sition) and the jump center, the fourth cation interaction
shell includes again two dopants near the jump center.
This 4th shell for the cation sublattice (8th total shell) has a 2NN interaction to both initial and
final position of the oxygen vacancy and could, therefore, be grouped as 2NN↔2NN RE-V jump
configuration centered at the jump center.
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Figure 7.31: Migration energy for different numbers of dopants at the next nearest edge position
(2NN↔2NN). Beside the migrating oxygen vacancy, no other defect is present. Sm and Y doped
ceria in 3× 3× 3 supercell.

The influence of dopants on the 2NN↔2NN position is small (Fig. 7.31). For Sm doped ceria,
the migration energy decreases slightly with increasing number of dopants. While in pure ceria
the barrier height is 0.482 eV, for one Sm dopant a similar (0.481 eV) and for two Sm dopants
a lower migration energy (0.476 eV) is found. For Y doped ceria, an increase in migration energy
for one (0.490 eV) and two dopants (0.493 eV) can be found. Therefore, doping the 2NN↔2NN

position decreases or increases the migration energy with 0.01 eV for two Sm dopant or Y dopants,
respectively. The scaling is categorical. However, the influence on the migration energy is small and
can be neglected.

2NN↔3,4NN

For three spheres expanding around the start and destination position and the jump center, the
fifth cation interaction shell includes six dopants near the start and six dopants near the destination
position. During an oxygen ion jump, four cations each can be grouped as 2NN↔3NN, while two
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7.2 Modeling the Migration Energy

dopants each can be grouped as 2NN↔4NN. For the cation sublattice, these are jumps between the
5th↔8,11th cation shell and for the both sublattices between the 9th↔16,23th total shell. In Fig. 7.32,
the migration energy is again shown as a function of the number of dopants.

< <

2NN↔3NN For 2NN↔3NN RE-V jumps in Sm doped ceria,
the migration energy increases by 0.0489(1) eV per dopant
at the start position or decreases by −0.0252(2) eV per
dopant at the destination position. For Y doped ceria, the
migration energy increases by 0.02792(4) eV or decreases
by −0.0082(2) eV per dopant. The difference between decrease and increase by 0.0741(3) eV for Sm
doped ceria and 0.0362(2) eV for Y doped ceria is of course again the difference in 3NN and 2NN

association energy. The average increases by 0.01 eV per dopant each for Sm and Y doped ceria.
The scaling for asymmetric and symmetric contribution is linear.

The influence of the 2NN↔3NN position for Sm doped ceria is very large. The asymmetric influence
is similar to the 1NN↔2NN configuration as shown by the difference between decrease and increase
in migration energy per dopant. The symmetric influence is smaller as shown by the average. For
Y doped ceria, the symmetric influences are equivalent to Sm doped ceria while the asymmetric
influence is much smaller than in the 1NN↔2NN. It may be noted that Sm/Y dopants in 1NN↔2NN

position in average decrease the migration energy while Sm/Y dopants in 2NN↔3NN position increase
the migration energy.
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Figure 7.32: Migration energy for different numbers of dopants at the 2NN↔3NN and 2NN↔4NN

position. Beside the migrating oxygen vacancy, no other defect is present. Sm and Y doped ceria
in 3× 3× 3 supercell.

< <

2NN↔4NN For 2NN↔4NN RE-V jumps in Sm
doped ceria, the migration energy increases by
0.019(1) eV or decreases by −0.0578(1) eV per
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dopant. For Y doped ceria, the migration energy
increases by 0.0204(1) eV or decreases by −0.045(2) eV per dopant. The difference between decrease
and increase by 0.076(1) eV for Sm doped ceria and 0.065(2) eV for Y doped ceria is of course again
the difference in 4NN and 2NN association energy. The average decreases by −0.020(1) eV for Sm and
−0.012(1) eV per dopant for Y doped ceria. The scaling for asymmetric and symmetric contribution
is linear.

The influence of the 2NN↔4NN position for Sm doped ceria is asymmetrically similar to the
1NN↔2NN and 2NN↔3NN position, while its symmetric contribution lies in-between both configura-
tions. For Y doped ceria, the symmetric influences are again similar to Sm doped ceria while the
asymmetric influence is much smaller than in 1NN↔2NN but larger than in the 2NN↔4NN position.
It may be noted that Sm/Y dopants in 2NN↔4NN position in average decrease the migration energy.

1,2NN↔1,2,3,4NN: Comparing Model and DFT Energies – Termination

Similar to the 6-cation environment, configurations with dopants in the 1st, 2nd↔5th, 3rd, 4th,
5th↔8,11th cation shell can be modeled.

Compared to the 6-cation environment, further jumps should be included into the model. In-
cluding the next shell around start and destination position and therefore all interactions up to
4.48 Å helps to distinguish jumps between 1NN↔1NN and 1NN↔2NN RE-V, while jumps between
2NN↔3NN and 2NN↔4NN RE-V cannot be distinguished and lead to the same migration energy.
The difference between the increase and decrease in migration energy per dopants near start and
destination position, respectively, is somehow similar for the 2NN↔3NN and 2NN↔4NN RE-V jump
environment. Therefore, an interactions radius of 4.48 Å might be a good balance between the
number of parameters and the quality of the model.

For this interaction radius, the termination and finite size correction becomes crucial for the
migration energy, as discussed in Chapter 5.1.1. Intuitive sd [ds] parameters are chosen for an
infinitely large supercell, which is calculated using a 2×2×2 and 3×3×3 supercell (model 2015) or
a variable number of supercell sizes (model 2014). Intuitive sd [ds] parameters are chosen for a 3NN

RE-V interaction of zero (model 2015) or for a RE-V interaction that is zero for infinite distances
(model 2014). While up to now already the finite size correction according to the model 2015 has
been used, both influences will be compared again in this section.

The DFT migration energies for an oxygen vacancy jumping away and towards a Sm dopant are
shown in Fig. 7.33. According to the model 2014, migration barriers for jumps away from a dopant
are overestimated. Migration barriers for jumps towards a dopant are mostly underestimated. The
sum of differences between the model 2015 and DFT migration energies and σn is smaller. Main
reason is the overestimated 2NN↔3NN RE-V association energy differences in the model 2014.

The smaller differences between individual parameters from the model 2015 compared to the
model 2014 can also be shown for all selected ionic configurations for 1,2NN↔1,2,3,4NN cation shell
jumps (Fig. 7.34). While a fit of the c1+sd [ds] and c1+c5+sd [ds] models with 4.48 Å RE-V in-
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Figure 7.33: DFT and model migration energies. Intuitive parameters are chosen according to the
model 2014 and 2015 as discussed above. Sm doped ceria in 3× 3× 3 supercell.

teraction radius lead to a σn of 0.048 and 0.026, the intuitive parameters according to the model 2015
lead to 0.065 and 0.047 and according to the model 2014 to 0.075 and 0.061, respectively. This verifies
the use of the model 2015.

Figure 7.34 also shows that the use of the c1+sd [ds] model with 4.48 Å RE-V interaction radius
is sufficient to fit or predict migration energies in the 1,2NN↔1,2,3,4NN cation shells if a low number
of parameters is desired.
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Figure 7.34: Model and DFT migration energies for jumps between 1,2NN↔1,2,3,4NN cation shells
with fitted (left) and intuitive parameters (right). Models c1+sd [ds] and c1+c5+sd [ds] with
4.48 Å RE-V interaction radius. Intuitive parameters for the infinite supercell according to model
2014 and 2015. DFT energies for Sm doped ceria in 3× 3× 3 supercell.
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More RE-V Shells

Further investigated shells include jumps between 3,4NN↔3,4,5NN or the 8,11th↔8,11,14th shell for
the cation sublattice. These jumps will be compared with configurations that extend the limitations
of Fig. 7.13 using the example of 4NN↔6,7NN.

3NN↔3NN For the 3NN↔3NN RE-V jumps, the influence is small. For one Sm dopant, an increase
from pure ceria 0.482 to 0.489 eV is found.

< <

3NN↔4NN For the 3NN↔4NN and 3NN↔5NN

RE-V jumps, the migration energy is shown
in Fig. 7.35. For 3NN↔4NN RE-V jumps in Sm
doped ceria, the migration energy increases by
0.0007 eV each or 0.0079(1) eV per dopant at
start and destination position, respectively. The difference between changes in start and destination
position per dopant is −0.0071(1) eV. The average increases by 0.0043 eV per dopant each. The
scaling for asymmetric and symmetric contribution is linear.

The influence of the 3NN↔4NN position is asymmetrically about factor 10 smaller compared to
the 1NN↔2NN and 2NN↔3,4NN position. Surprisingly dopants in 3NN→4NN increase and dopants in
4NN→3NN decrease the migration energy. The symmetric contribution is very small.
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Figure 7.35: Migration energy for different numbers of dopants at the 3NN↔4NN and 3NN↔5NN

position. Beside the migrating oxygen vacancy, no other defect is present. Sm doped ceria in
3× 3× 3 supercell.
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< <
3NN↔5NN For 3NN↔5NN RE-V jumps in Sm
doped ceria, the migration energy decreases by
−0.0191(1) eV or −0.0242(5) eV per dopant at
start and destination position, respectively. The difference between changes in start and destination
position per dopant is 0.005(1) eV. The average decreases by −0.0216(2) eV per dopant. The scaling
for asymmetric and symmetric contribution is linear.

The influence of the 3NN↔5NN position is asymmetrically similar to the 3NN↔4NN position with
a changed sign. The symmetric contribution is surprisingly larger than the asymmetric contribution
and similar to the 2NN↔4NN position.

4NN↔4NN For the 4NN↔4NN RE-V jumps, from pure ceria (0.482 eV) a similar increase of 0.0151 eV
each for one (0.497 eV) and two dopants (0.512 eV) is found.

4NN↔5NN For 4NN↔5NN RE-V jumps in Sm doped ceria, the migration energy increases by
0.0168(4) eV or decreases by −0.0115 eV each per dopant at start and destination position, respec-
tively. The difference between changes in start and destination position per dopant is 0.0283(4) eV.
The average increases by 0.0027(2) eV per dopant each. The scaling for asymmetric and symmetric
contribution is linear.

The influence of the 4NN↔5NN position is small compared to the earlier positions.

4NN↔6NN As the difference in association energy between 5NN, 6NN and 7NN is assumed to be small
(Chapter 4.2.1), jumps between 4NN↔5NN and further shells (e.g. 4NN↔6,7NN) are assumed to be
similar. For the 4NN↔6NN RE-V jumps, compared to pure ceria (0.482 eV), the migration energy
increases for one Sm dopant by 0.004 eV (0.486 eV) at the start position or decreases by −0.01 eV
(0.469 eV) at the destination position. The influence of the 4NN↔6NN position is small.

4NN↔7NN For 4NN↔7NN RE-V in Sm doped ceria, the migration energy decreases by −0.022(2) eV
per dopant both at start and destination position. This would suggest a purely symmetric contri-
bution, which scales linearly. However, due to the large defect distance of nearly 10 Å in a 3× 3× 3
supercell, the distance between the defects and their copies due to periodic boundary conditions
is only slightly larger than the defect distance itself. Therefore, lattice relaxations may propagate
periodically leading to false migration energies. Overall, the contribution is small.
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Conclusion

While the influence of dopants on 1,2NN↔2,3,4NN positions is large, dopants with larger distances
to the migrating oxygen ion show significantly lower asymmetric and (with the exception of the
3NN↔5NN configuration) symmetric contributions. Interesting is the regular change between in- and
decrease in migration energy for dopants at the start position in the sequence of jump configurations
(cp. Fig. 7.36). This change in sign for the asymmetric contributions suggests alternating shielding
effects for successive jump shells.

Geometric symmetric configurations often feature categorical scaling while geometrically asym-
metric configuration can be described well using asymmetric and symmetric contributions.
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Figure 7.36: Migration energy for different numbers of dopants. Beside the migrating oxygen vacancy,
no other defect is present. Sm doped ceria in 3 × 3 × 3 supercell. The range of the migration
energy is marked on the right side.
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7.2.5 Influence of Vacancies on a Jump
The V-V association energy is positive and decreases with increasing distance between both oxygen
vacancies. An exception is the 2NN→3NN configuration (see Chapter 5.1.1).

This trend can also be seen in the migration energies, which are shown as a function of the
number of oxygen vacancies in Fig. 7.37. Here, the sum of migrating oxygen vacancy and additional
vacancies is given. Jumps are labeled for distances in the anion sublattice similar as described above
for the cation sublattice. The 2NN↔3o,mNN configuration contains jumps to both 3oNN and 3mNN.
A jump of an oxygen vacancy in the direction of another oxygen vacancy is impeded. A jump in
the direction of several oxygen vacancies possesses even higher migration energies. Similar to the
association energy, the 2NN→3NN jump is an exception.

2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

 

 

mi
gra

tio
n e

ne
rgy

 (e
V)

n u m b e r  o f  v a c a n c i e s

a d d i t i o n a l  v a c a n c y  a t
  s t a r t   d e s t i n a t i o n

  1 N N � 2 N N

  2 N N � 3 m
N N

  2 N N � 3 o , m
N N

  2 N N � 3 o
N N

  2 N N � 5 N N

  3 m
N N � 6 N N

  4 N N � 5 N N

Figure 7.37: Migration energy for different numbers of oxygen vacancies. The moving vacancy is
included in the number of vacancies. No other defect is present. Lines show a linear fit. 3× 3× 3
supercell.

Surprising is the 2NN↔3oNN configuration, where additional oxygen vacancies near both the start
and destination position lead to slightly larger migration energies due to a positive symmetric
contribution. This is probably caused by the missing shielding of an interjacent cerium-ion causing
all configurations with additional vacancies to an increase in migration energy.

Again, the difference and the average between forward and backward jump can be calculated.
The difference between both jumps per additional vacancy decreases with increasing number of
additional vacancies, e.g. for 1NN↔2NN from 0.56 to 0.38 eV or for 2NN↔5NN from 0.28 to 0.26 eV.
This is caused by local relaxations, which lead to energetically more similar configurations even if a
large number of defects is present. The absolute average between both jumps per additional vacancy
is 0.03 eV or below for all configurations except for 1NN↔2NN and 3mNN↔6NN. For the 1NN↔2NN

configuration, one additional vacancy approximately leads to a purely asymmetric configuration
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while for more vacancies the average migration energy increases by 0.1 eV per addition vacancy.
This is obviously caused by the strong repulsion between vacancies and the already low migration
energy for one additional vacancy. For the 3mNN↔6NN configuration, the effect is similar and starts
already for one additional vacancy.

Therefore, the scaling can be approximated as linear, even the sole use of asymmetric contribu-
tions is a good approximation. A comparison for a corresponding model (lines) and DFT migration
energies (points) is shown in Fig. 7.38.
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Figure 7.38: Migration energy for different numbers of oxygen vacancies. The moving vacancy is
included in the number of vacancies. No other defect is present. Points show DFT results for the
3× 3× 3 supercell. Lines show model migration energies for linear scaling using the association
energy from the extrapolated (left) and 3× 3× 3 supercell (right).

The migration energy can again be modeled using the association energies from the extrapolated
or 3 × 3 × 3 supercell. Both cases show a good approximation of the migration energy if only a
low number of parameters is desired. The model could be improved by considering a symmetric
contribution for the 3mNN↔6NN configuration.
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7.2.6 Comparing Model and DFT Energies
Up to now, models have only been fitted to jump configurations with a single oxygen vacancy. In
this chapter, the influence of additional vacancies on a jump is investigated. However, RE-V and
V-V interactions are still only investigated separately. Here, jumps configurations contain either
additional dopants or vacancies. The interaction between both sublattices is investigated in the next
section.

Similar to earlier proposed models, only the 1NN↔1NN RE-V jump configuration is considered to
scale categorically, while for simplicity all other jump configurations are considered to scale linearly.
Up to now, models based on equal interaction radii for start and destination were used, as the
investigation of the groups revealed that both positions affect the migration energy. In this chapter,
this assumption will be verified by considering only groups around the start, the center or the
destination position.

Besides the question of centering the influences on the migration barrier, a model with sufficient
quality but with a low number of parameters is desired. Therefore, the number of parameters is
reduced and the interaction radius limited.
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Figure 7.39: R̄2 and standard derivation for different models (c1 is categorical). The jumping oxygen
vacancy interacts with either dopants or vacancies. Jumps up to the 23th shell (6.76 Å) are
included. Sm doped ceria in 3× 3× 3 supercell.

In Fig. 7.39, the adjusted R̄2 and standard derivation for different models is shown for Sm doped
ceria. An extract of the data is shown in Fig. 7.40 for simplicity.

Clearly, models using only spheres around either the start (s), the center (c) or the destination
position (d) are not sufficient to describe the migration energy. Even a combination of spheres at
start and center (sc), which is similar to the approach of the transition state theory, could only
be used at large interaction radii. However, a combination of spheres at destination and center
(cd) gives even better results at low interaction radii than spheres at all three position using the
difference of the number of dopants between start and destination position (scd [ds]). Obviously,
for Sm doped ceria, influences around the destination position are strong as seen by the scaling of
e.g. the 1NN↔2NN and 2NN↔4NN RE-V jumps.
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A migration energy model should include interactions
of the migrating oxygen vacancy with defects

around its position in initial, transition and final state.
Using the largest number of parameters, as in the scd [s,d] model, not always leads to the largest

adjusted R̄2 as the same regression quality can be reached with a fever number of parameters. At
6.76 Å, the scd [s,d] model reaches the highest adjusted R̄2 value for all models of 0.9804. Here, 36
parameters are used. As the number of parameters is very high, a reduction of parameter is desirable.
Without decreasing the quality of the model too much, the number of parameter can be decreased to
10 parameters in the model c1+sd [ds] with an interaction radius of 5.41 Å (Fig. 7.40, R̄2 = 0.86).
Especially influences near the jump center can be reduced and therefore symmetric contributions
neglected. As seen before, these are in most cases small compared to the asymmetric contribution.
A comparison between DFT and model energies for the model c1+sd [ds] is shown in the appendix
in Fig. 9.9. An interaction radius of 5.41 Å corresponds exactly to the length of the unit cell or the
lattice parameter. This is not surprising as the length of the unit cell correlates with the translation
symmetry in the solid.
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Figure 7.40: R̄2 for selected models (c1 is categorical). The jumping oxygen vacancy interacts with
either dopants or vacancies. Jumps up to the 23th shell (6.76 Å) are included. If a minimal number
of parameters is desired, a model with a single symmetrical influence (c1) and an interaction
radius of 5.41 Å is sufficient. Sm doped ceria in 3× 3× 3 supercell.

7.2.7 Jumps at Experimental Defect Concentrations
Previously it was assumed for simplicity that cation and anion sublattice do not interact. In this
section, a comparison is performed between migration energies from the model and the DFT cal-
culations at dopant concentrations, which are often used in experiments (Ce1–xSmxO2–x/2 with
x = 0.05, 0.1 and 0.15), using probable jump configurations.
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A fit of different models to the DFT migration energies is shown in Fig. 7.41.
Again, the c1+sd [ds] model with an interaction radius of 5.41 Å has a sufficient quality to

describe the migration energies. The adjusted R̄2 = 0.80 is slightly lower compared to the sep-
arate investigation of the sublattices above. This is caused by the interaction of the sublattices
and the larger defect concentration. The decrease in R̄2 is small, which indicates the following:

The interaction between both sublattices is small and even
migration energies at large defect concentration

can be fitted using the proposed model.
A comparison with the fitted model and the DFT migration energies is shown in Fig. 7.42 (left).
For the fitted parameters σs is 0.089 totally.
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Figure 7.41: R̄2 and standard derivation for different models (c1 is categorical). The jumping oxygen
vacancy interacts with both dopants and vacancies. Both sublattices interact. Interactions up to
the 13th shell (5.41 Å) are included in the model. Sm doped ceria in 3× 3× 3 supercell.

The ability of the model c1+sd [ds] to predict migration energies using intuitive parameters
from the infinitely large supercell is shown in Fig. 7.42 (right).1 With increasing dopant fractions,
the standard deviation increases. For the intuitive parameters σs is 0.06, 0.09 and 0.11 for x = 0.05,
0.1 and 0.15, receptively. For all dopant fractions σs is totally 0.093. The deviation to the regression
of the fitted parameters is small. Therefore, the chosen intuitive parameters are well suited for
experimental defect concentrations.

1For different interaction radii of the model c1+sd [ds], compare Fig. 9.10 in the appendix.
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Figure 7.42: Model and DFT migration energies with fitted and intuitive parameters. The jumping
oxygen vacancy interacts with both dopants and vacancies. Both sublattices interact. The model
c1+sd [ds] up to the 13th shell (5.41 Å) is used. Intuitive parameters are chosen for the infinite
supercell as discussed above with the termination Eass(3NN RE-V) = 0 and Eass(5NN V-V) = 0.
A proportional behavior with a deviation of 0.1 eV is marked. Sm doped ceria in 3 × 3 × 3
supercell.

7.2.8 Comparison with Models in Literature

Several models have been proposed in literature to predict the migration energies in doped ceria or
yttria-stabilized zirconia. Main differences are the interaction radius, the centers of interactions and
the number of chosen parameters. Using the vast amount of configurations calculated in this work,
the quality of the proposed models can be estimated.

Krishnamurthy et al. [225] simulated the ionic conductivity in yttria-stabilized zirconia using an
interaction radius of only 1.91 Å. They calculated the three edge configurations of c1 categori-
cally: Zr-Zr, Zr-Y and Y-Y. Though yttria-stabilized zirconia was not investigated in this work, the
reduction of all possible migration energies to three values might be a bad approximation.

Meyer and Nicoloso [220] included for fluorite-type oxides only the RE-V interaction and neglected
any V-V repulsion. Separate models were created considering either trapping (sd [ds] with an
interaction radius of 2.34 Å) or blocking (c1 with E1, Ce-RE

shell = E1, RE-RE
shell ). As trapping and blocking

are only considered separately, c1 is badly approximated and no V-V is considered, several effects
are missing that are assumed in this work to be essential to understand the ionic conductivity.

Adler and Smith [281] simulated the ionic conductivity in Y doped ceria. For the RE-V and V-V
interaction, a modified Coulomb potential is used that contains an empirical scaling term that adjust
the range of the interaction. The range of interaction is varied between 1NN for RE-V and V-V and
infinity. The migration barrier that is added to this association energy difference is assumed to be
independent of the ionic environment according to spin-lattice measurements. [418] This leads to a
sd [ds] model with an interaction radius between 2.71 Å and infinity. While the linearly scaling
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for sd [ds] is a good approximation as confirmed in this work, the neglected categorically scaling
of the c1 leads to strong deviations compared to calculated migration energies.

Martin [37] and Grope et al. [287] used c1 categorically. Martin added the first RE-V interaction
around the start position using a linear scaling. In the second paper, they also considered the first
V-V interaction for Y and Sm doped ceria. The resulting c1+s model with an interaction radius of
2.34–2.71 Å allows a clear separation of blocking and trapping effects. However, the model quality
is limited as shown in Fig. 7.39.

Nakayama and Martin [54] propose a c1+s model considering only the cation sublattice with
categorical c1 and otherwise linear scaling with an interaction radius of 4.48 Å. As shown in this work
is the destination position crucial to model the migration energy. Furthermore, no V-V interactions
are considered.

All configurations of the 6-cation environment were calculated by Murray, [41] and Oaks et
al. [282,283] for Y and La doped ceria, respectively, and by Pornprasertsuk et al. [371] for yttria-
stabilized zirconia. The latter is also investigated by Shimojo and Okazaki [428] by extracting the
jump configurations of performed jumps from MD simulations. The resulting 30 parameters model
(scd without grouping and scaling) with an interaction radius of 2.34 Å is an acceptable approxi-
mation for the RE-V interaction of the migrating oxygen vacancy. However, no V-V repulsion was
considered leading to unphysical results for high dopant fractions. In a later model, Pornprasertsuk
et al. [372] increased the interaction radius to include 2NN RE-V and V-V interactions using the
association energy.

A larger interaction radius was considered by Dholabhai et al. [224,284–286] for Pr, Gd and Sm doped
and Gd-Pr co-doped ceria. For the RE-V interactions, migration energies with a single dopant up
to a 3NN RE-V distance were calculated. Though the exact formula for the model is not mentioned,
the created model could be similar to a c1+c8+c15+sd [s,d] model with linear scaling and an
interaction radius of 4.48 Å considering only the cation sublattice. A model without V-V interactions
and a model prohibiting vacancies from being on 1NN V-V position were used. As c1 is not calculated
categorically and barely any V-V interactions are considered, large deviations between model and
actual migration energies at high dopant fractions are expected.

Using a cluster expansion, Lee et al. [373] fitted 100 randomly chosen ionic configurations in yttria-
stabilized zirconia using clusters with up to three ‘spins’ and an interaction radius that is 50% larger
than the lattice parameter. Though the model with 9 parameters has a good fit quality, insights
into the significance of the parameters are limited.

In an earlier presented work, [55] the ionic conductivity in Y doped ceria was simulated using a
c1+sd [ds] model with linear scaling except for c1 and an interaction radius of 4.69 Å. The model
has a high quality as shown in Fig. 7.39. As subsequent Metropolis Monte Carlo simulations revealed
a significant influence of the 4NN V-V interactions on the ordering of the defects, in this work an
interaction radius of 5.41 Å is used.
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Conclusion

Several models for the migration energy in doped ceria were developed. Interaction around the mi-
grating oxygen ion in the initial, transition and final state were investigated. Lattices sites were
grouped according to their distance to the initial and final position of the migrating oxygen ion.
Defects appearing in these groups lead either to a linear change in migration energy with increasing
number of dopants (linear scaling, e.g. around the start position) or categories for different numbers
of dopants have to be defined (categorical scaling, e.g. c1 around the center position). Influences of
groups are independent of each other. Therefore, the migration energy is given as sum of the migra-
tion energy in pure ceria and the influences of all groups. For a better understanding, contributions
were separated in symmetric and asymmetric contributions. For example, Sm dopants in 1NN↔2NN

RE-V influence the migration energy both through the configurational energy difference between
final and initial state and an energy contribution per dopant near either start or destination position.
The number of parameters for the migration energy model could be reduced by using an interaction
radius of 1.91 Å around the jump center and 5.41 Å around the start and destination position. Even
without symmetric contributions around the start and destination position, an acceptable quality
and prediction capability of the model was reached. Over 1100 migration energies were calculated
using DFT to successfully verify the quality of the proposed model for small and experimental defect
concentrations.
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7.3 Simulating the Ionic Conductivity for Different

Models
Finally, the ionic conductivity is simulated using a c1+sd [ds] model with different interaction
radii. In Fig. 7.43, the simulated ionic conductivity of Sm doped ceria at 500 °C using different
interaction radii is shown. A randomly ordered cation-sublattice is assumed. Intuitive parameters
for the infinitely large supercell are chosen with termination at the first neglected interaction as
described above. As the V-V association energy does not monotonously decrease with increasing
V-V distance (Chapter 5.1.1), an association of V-V takes place as shown in Fig. 7.44.
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Figure 7.43: Simulated ionic conductivity of Sm doped ceria at 500 °C (left) using different interaction
radii as shown on the right for the RE-V (green) and V-V interaction (red). Around the jump
center at most the first interaction is used with categorical scaling. Intuitive parameters are used
as described above.

Without considering any interactions (interaction radius of 0 Å), the conductivity is dominated
by the number of charge carriers and the number of possible jump destinations. With increasing
dopant fraction the number of charge carriers increases leading to an increase in conductivity.

If oxygen vacancies are considered as charge carriers, with the anion sublattice fraction c = x
4 , the

number of oxygen ion lattice sites decreases with increasing dopant fraction according to (1− c) or
2 · (1− x

4 ). As vacancies cannot be at the same lattice side, additional vacancies block the movement
of an oxygen vacancy, which is referred to as site-blocking. The resulting conductivity is proportional
to c(1− c) or 1

2x · (1−
x
4 ) with a maximum in conductivity at the dopant fraction x = 2, which does

not only neglect solubility limits and phase transitions that occur in experiments (Chapter 2.1.2)

167



7 Activation Energy

0 1 2 3 4 5 6- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

2 N N  V - V
4 N N  V - V

3 N N  V - V

2 N N  R E - V

1 N N  V - V
as

so
cia

tio
n e

ne
rgy

 (e
V)

i n t e r a c t i o n  r a d i u s  ( Å )

1 N N  R E - V

Figure 7.44: Association energies as intuitive model parameters as a function of interactions radius.

but also cannot even theoretical be reached by doping with a trivalent dopant.

For an increasing interaction radius around center, start and destination position, interactions
of the migrating oxygen vacancy with dopants (RE-V) and vacancies (V-V) are subsequently con-
sidered. The conductivity as a function of dopant fraction changes in amplitude and curve shape.
For an increasing interaction radius up to 4.48 Å, an overall decrease in the ionic conductivity can
be found. From an interaction radius of 4.48 Å to 4.69 Å, the ionic conductivity increases again.
From an interaction radius of 4.69 Å to 5.41 Å, an increase at low dopant fractions and decrease
starting at intermediate dopants fractions can be found. The shape of the curves changes, the dopant
fraction that leads to the largest conductivity decreases with decreasing overall conductivity. For
an interaction radius of 5.41 Å, an exceptional ascending slope is found: The conductivity decreases
strongly with increasing dopant fraction starting from intermediate dopant fractions.

For an interaction radius of 1.91 Å, the conductivity is not only influenced by site-blocking but
also by increased symmetric migration barriers around dopants. This interaction around the jump
center increases both forward and backward jumps and is in this work referred to as blocking. As a
result, the equilibrium distribution of the defects is unaltered. However, vacancies stay longer near
dopants due to the increased migration edges. Therefore, the ionic conductivity decreases.

Increasing the interaction radius to 2.34 Å introduces the 1NN RE-V interaction (Fig. 7.44). Jumps
of the migrating oxygen vacancy to the dopant (2NN→1NN RE-V) possess a smaller migration energy
than in pure ceria. Jumps away from the dopant (1NN→2NN RE-V) possess a larger migration energy
than in pure ceria. The vacancy is trapped. The equilibrium distribution of the defects changes, RE-V
associates appear. The conductivity decreases significantly.
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Increasing the interaction radius to 2.71 Å introduces the 1NN V-V interaction. In contrast to the
RE-V association, the V-V interaction is repulsive. Jumps of the migrating oxygen vacancy to an
adjacent vacancy (2NN→1NN V-V) have a very large migration energy. Therefore, vacancies rarely
appear in nearest neighborhood. The influence on the ionic conductivity is similar to an increased
site-blocking: The conductivity decreases slightly. The result is in agreement with literature. Dho-
labhai et al. showed a decrease in conductivity and xmax for a vacancy repelling model compared to
a vacancy non-repelling model. [284]

Increasing the interaction radius to 3.83 Å introduces a 2NN V-V association. As the V-V asso-
ciation energy does not monotonously decrease with increasing V-V distance (Chapter 5.1.1), an
association of V-V takes place. Vacancies appear more often in next nearest neighborhood. The
conductivity decreases significantly.

Increasing the interaction radius to 4.48 Å introduces the 2NN RE-V interaction and increases the
trapping effect. Similar to other association effects, the conductivity decreases significantly.

In summary, all interactions can decrease the conductivity: Increased symmetric migration barri-
ers (blocking), RE-V association (trapping), V-V association and even V-V repulsion. The influence
on the conductivity increases with increasing dopant fraction.

However, this is not always the case: Increasing the interaction radius to 4.69 Å increases the
conductivity. Here, the V-V association changes to repulsion and the V-V repulsion is increased.
Obviously, V-V repulsion can also increase the conductivity.

Increasing the interaction radius to 5.41 Å increases the V-V repulsion significantly. However, the
influence on the conductivity up to x = 0.15 is marginal. Here, the conductivity slightly increases. For
larger dopant fractions the conductivity strongly decreases. While for small vacancy concentrations
the V-V repulsion leads to an ordering of the vacancies that increases the conductivity, starting at
intermediate vacancy concentrations the number of vacancies is too large leading to a decrease in
conductivity.

In summary, repulsion between defects can both de- and increase the conductivity as it influences
the defects distribution and can create an ordering of defects.

The simulated ionic conductivity of Sm doped ceria at 500 °C for an interaction radius of
5.41 Å was already compared to experiments in the last chapter in Fig. 6.15 (fixed attempt fre-
quency). [74,179] Experimental and calculated conductivities are in agreement. However, a large scat-
tering in experimental values was found. Therefore, a clear preference for an interaction radius
cannot be determined. Therefore, the agreement between calculated DFT migration energies and
the proposed model is used as a decisive criterion for an interaction radius of 5.41 Å. Thus, a migra-
tion energy model was successfully developed to calculate the ionic conductivity for various dopants
and dopant fractions.

Blocking, trapping and V-V interaction During the discussion of different interaction
radii, the effects of symmetric migration barriers (blocking), RE-V association (trapping), V-V
repulsion and even V-V association have been discussed. To evaluate their influence on the con-
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Figure 7.45: Simulated ionic conductivity of Sm doped ceria at 500 °C (left) using blocking, trap-
ping and V-V interactions with an interaction radius of 5.41 Å as shown on the right for the
RE-V (green) and V-V interaction (red). Additionally, interactions are switched off individually.

ductivity for the final migration energy model, they are switched off individually. This will improve
the understanding of the underlying mechanism that determines the magnitude of the oxygen ion
conductivity and the optimal dopant concentration.

In Fig. 7.45, blocking, trapping and V-V interaction are switched off individually. Therefore,
increased symmetric migration barriers due to dopants around the jump center or association energy
contributions due to RE-V association or V-V interaction are neglected. Additionally, the full model
with an interaction radius of 5.41 Å is shown. In the following, the change in conductivity compared
to the full model is discussed.

Neglecting RE-V interactions (blocking and trapping) leads to an increase in conductivity com-
pared to the full model similar to the investigation above. For no trapping, the slope of the conduc-
tivity as a function of dopant fraction increases and the dopant fraction leading to the maximum
in conductivity xmax slightly increases. Trapping decreases the conductivity at all dopant fractions
up to 60%, especially at intermediate dopant fractions slightly above the optimal dopant concen-
trations. The strong deviation of the conductivity at low dopant fraction shows the importance of
trapping for small defect concentrations. The small change in xmax indicates that trapping reduces
the optimal dopant concentration but is only a minor effect. For no blocking, xmax increases signif-
icantly. Obviously, the dopant fraction leading to the maximum in conductivity is strongly limited
by blocking.

Neglecting V-V interactions decreases the conductivity compared to the full model. Here, a strong

170



7.3 Simulating the Ionic Conductivity for Different Models

trapping of the oxygen vacancies takes place since no V-V repulsion is included. As a result, the
conductivity decreases and xmax is significantly smaller. This emphasizes the importance of V-V
interactions, which are often neglected in literature (cp. Chapter 7.2.8).

Microscopic blocking and trapping are connected
with the macroscopic conductivity.

The results are in agreement with literature. Using an analytical model, Martin showed the change
in conductivity with the consideration of blocking, additional weak trapping and additional strong
trapping. [37] Meyer and Nicoloso showed the typically maximum in conductivity as a function of
dopant fraction using KMC simulations and only blocking. [220] Grope showed a similar influence on
the conductivity for neglected blocking, trapping or V-V interaction for Sm and La doped ceria. [429]

KMC simulations of doped ceria have already been performed by several groups for YSZ [225,371–373]

and doped ceria. [41,55,220,224,281–287] However, the strong influence of the chosen interaction radius
shows the necessity for a more complex migration energy model than used in these studies. In this
work, a model was developed with high complexity but few and intuitive ab initio parameters, which
correlate with material properties. Grouping effects into blocking, trapping and V-V interaction
allows a detailed understanding of the underlying mechanism that determines the magnitude of the
oxygen ion conductivity and the optimal dopant concentration.
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8 Oxygen Ion Conductivity

In this chapter, the oxygen ion conductivity in experiments and simulations is presented and several
influences are analyzed: The influence of sample preparation on the conductivity is shown by varying
the sintering temperature and sintering duration (Chapter 8.1). The influence of doping on the
conductivity (Chapter 8.2) is simulated, compared with literature and separated into effects due to
trapping, blocking and V-V interactions. For comparison, impedance measurements were performed
for Sm, Gd and Lu doped ceria (Chapter 8.2.2, 8.2.3 and 8.2.5) and are compared with simulations
(Chapter 8.2.6). Additionally, ceria co-doped with Sm-Zr and Gd-Zr are investigated including
polycrystalline samples and agglomerates of single crystals (Chapter 8.2.4). Finally, the influence
of time on the conductivity is shown: Long-term degradation caused by cation ordering is found in
calculations and experiments (Chapter 8.3).

8.1 The Influence of Sample Preparation:

Varying the Sintering Temperature and Duration
Due to scattering of the ionic conductivity in literature of materials with the same composition, in-
fluences of the sample preparation were investigated. It is assumed that the powder synthesis and the
sintering process are the main influences on the ionic conductivity. [297,298,301,430] In Chapter 4.1.3,
the influence of the sintering temperature and sintering duration on the macroscopic structure is
investigated (see Fig. 4.2). Earlier investigations show that variations in the powder calcination
duration, the milling and pressing of the powder, and the polishing procedure of the pellets have
only minor influences on the conductivity. [1] In contrast, contacting the sample surface, which was
painted with Pt paste, with either Pt wire or mesh leads to different conductivities. Therefore, all
samples were contacted similarly. The impedance spectroscopy measurements and grain size analyses
in this chapter were performed by Mark Bispinghoff.

For polycrystalline samples, the total conductivity is influenced by the bulk and grain boundary
domain (see Chapter 2.4.2 and 4.1.5). Using impedance spectroscopy and the Bauerle model, Za-
jac and Molenda found for Ce0.85Sm0.15O1.925 that the grain boundary conductivity is only 4% of
the bulk conductivity at 320 °C. [170] In this work, the differences between both domains is smaller
(Fig. 8.2). Nevertheless, the total conductivity is dominated by the smaller grain boundary conduc-
tivity. [301] Thus, an optimization of the grain boundary conductivity is desirable.
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Possible Influences on the Ionic Conductivity

For a sample with given composition, the conductivity can be influenced by intrinsic and extrinsic
effects. Intrinsic influences are cation ordering, space charge zones and grain boundary segregation.
Extrinsic influences are porosity and impurities.

Different sintering temperatures might lead to different cation distributions. Combined MMC
and KMC simulations of Ce0.85Sm0.15O1.925 according to Chapter 4.2.2 showed no influence on
the ionic conductivity at 173 °C (446 K) of the bulk for equilibration temperatures (T2) between
1111 °C (1384 K) and infinite temperature (see Fig. 8.1). MMC simulations were performed by
Steffen Grieshammer.

1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0
1 2 . 8

1 3 . 0

1 3 . 2

1 3 . 4

1 3 . 6

1 3 . 8

1 4 . 0

1 4 . 2

1 4 . 4

σ (
µS

/cm
)

c a t i o n  e q u i l i b r a t i o n  t e m p e r a t u r e  T 1  ( K )
  i n f   

Figure 8.1: Ionic conductivity of Ce0.85Sm0.15O1.925 at 173 °C based on MMC and KMC simulations
as a function of cation equilibration temperature. The infinite cation equilibration temperature
is marked with ‘inf’.

Generally, in acceptor doped fluorite and perovskite structures, the grain boundary conduc-
tivity is smaller compared to the bulk conductivity since space charge zones are present. [431–435]

TEM measurements show that at most dislocations rather oxygen vacancies than cation intersti-
tials are present. Several studies confirm that the formation of oxygen vacancies in grain bound-
aries is favored [436] and the diffusion perpendicular to the grain boundary is hindered. [315,437–446]

The positively charged dislocations lead to a depletion of oxygen vacancies near the grain bound-
ary. [438,439,447] The same is true for other dislocations. [389] Therewith the charge carrier concentra-
tion is low and the grain boundary conductivity is low compared to the bulk. [337,434,444,448,449]

The positively charged dislocations may lead to an accumulation of cations, which have a lower
valence than the host cation (e.g. rare-earth dopants). At high sintering temperatures, cations are
mobile in ceria and dopants may move to the grain boundary due to the space charge zones. [450] This
grain boundary segregation may increase the grain boundary conductivity. For very small dopant
fractions, the dopant concentration in the bulk decreases significantly and may lead to a lower bulk
conductivity. The grain boundary segregation increases for smaller grain sizes. [337]
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Impurities beyond the powder composition are also deposited especially at the grain boundaries.
In literature, especially silicon dioxide (SiO2) is detected, which originated probably from the furnace
during the sintering process. X-ray Photoelectron Spectroscopy (XPS) shows that thin, uniform
films of SiO2 are deposited at temperatures below 1400 °C. The deposited SiO2 decreases the ionic
conductivity, especially for the grain boundary domain. At higher temperatures impurities appear at
triple points between grains leading to a smaller influence on the grain boundary conductivity. [451]

For smaller grain sizes, the impurity effect is assumed to be small since many grain boundaries are
present and the impurity concentration per grain boundary is small. Thereby, also no continuous
impurity films at the grain boundaries occur. [300]

Finally, high porosity blocks the conduction paths generally leading to lower conductivities. [298]

In fact, also the pore shape, size and spatial distribution influence the conductivity.

Sintering and the Ionic Conductivity according to Experiments in this Work

Influences of the porosity (Fig. 4.2) on the ionic conductivity are assumed to be small for samples
sintered above 1260 °C or with sintering durations above 24 hours at 1190 °C.

For increasing sintering temperature (blue arrow in Fig. 4.3), Fig. 8.2 shows the macroscopic
ionic conductivity of the bulk (left) and grain boundary domain (right) at constant sintering time.
The order of precedence for the conductivity between samples is similar in bulk and grain boundary
domain, with the exception of the sample sintered at 1500 °C. As the order of precedence is similar
at all measured temperatures, Fig. 8.3 (left) gives a quick view of the conductivity trends. While
grain size (and density) increases with increasing sintering temperatures, the conductivities change
without a monotonous trend.

1 . 5 2 . 0 2 . 5 3 . 0
- 1 5

- 1 0

- 5

0  T s i n t e r  =  1 1 2 5  ° C
 T s i n t e r  =  1 2 0 0  ° C
 T s i n t e r  =  1 2 7 5  ° C
 T s i n t e r  =  1 4 2 5  ° C
 T s i n t e r  =  1 5 0 0  ° C

ln(
σT

/(S
·K/

cm
))

1 0 0 0 / T   ( K - 1 )

b u l k

6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0
T  ( ° C )

1 . 5 2 . 0 2 . 5 3 . 0
- 1 5

- 1 0

- 5

0  T s i n t e r  =  1 1 2 5  ° C
 T s i n t e r  =  1 2 0 0  ° C
 T s i n t e r  =  1 2 7 5  ° C
 T s i n t e r  =  1 4 2 5  ° C
 T s i n t e r  =  1 5 0 0  ° C

ln(
σT

/(S
·K/

cm
))

1 0 0 0 / T   ( K - 1 )

6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0

g r a i n  b o u n d a r y

T  ( ° C )

Figure 8.2: Ionic conductivity of bulk (left) and grain boundary domain (right) for different sintering
temperatures after tsinter = 10 h according to impedance experiments.

In Fig. 8.3 (right), all other measurements are included. For increasing sintering durations (red
arrow in Fig. 4.3), no clear trend can be found for increasing grain size. While e.g. for the bulk
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domain at 1200 °C the ionic conductivity first in- and then decreases with increasing sintering
duration, at 1500 °C the ionic conductivity first de- and then increases. For similar grain sizes, few
samples show similar properties in bulk and grain boundary domain (e.g. 1275-35 and 1350-20 for
all temperatures) while others show different results (e.g. 1275-10 and 1275-35 for all temperatures).
Generally, a decrease in conductivity with increasing grain size can be found with several exceptions.
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Figure 8.3: Ionic conductivity at 173 °C according to impedance experiments as a function of sin-
tering temperature after tsinter = 10 h (left) and for all measurements as a function of grain size
(right). Lines are a guide to the eye only.

This behavior is unexpected especially for the bulk domain, where the conductivity was reported
to be either independent of the microstructure or increasing for higher densities. Though influences
of the grain sizes and shape are reported in literature, these effects are assumed to be small in this
work. [329] The scattering of the ionic conductivity can also be clearly seen in the Nyquist plot of
the impedance measurements. Here, semicircles overlap resulting in semicircles, which are influenced
by several domains. Therefore, the analysis method of the semicircles is probably not valid here.
Having said that, the differences in the Nyquist plot show a significant influence on the conductivity
behavior due to different sintering properties, confirming the initial thesis:

The sintering process strongly influences
the ionic conductivity.

Figure 8.4 (left) shows that the influence of the grain boundary domain on the total conductivity,
according to the series brick layer model (S-BLM) (Eq. 4.12), decreases with increasing measuring
temperature in this work and in literature. [297,300] Higher sintering temperatures lead to a larger
influence on the total conductivity in literature and in this work, with the exception of the sample
sintered at 1125 °C. Generally, for larger grain sizes, the influence of the grain boundary domain on
the total conductivity increases in this work and in literature (Fig. 8.4 right). [74]

The activation enthalpy of the bulk domain decreases for larger sintering temperatures and grain
sizes (Fig. 8.5). Again, no influence of the microstructure on the activation enthalpy of the bulk
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Figure 8.4: Grain boundary contribution to the resistivity according to impedance experiments as a
function of measuring temperature (left) and grain size (right) for Ce0.85Sm0.15O1.925 with data
from [a] Wang et al., [297] [b] Zhan et al. [300] and [c] Zhan et al. [74] Lines are a guide to the eye
only.

domain was reported in literature. [297,298] The activation enthalpy of the grain boundary domain
increases for larger sintering temperatures and grain sizes (Fig. 8.5). Several outliers can be observed.
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Figure 8.5: Activation enthalpy according to impedance experiments as a function of sintering tem-
perature for tsinter = 10 h (left) and grain size (right). Lines are a guide to the eye only.

Sintering and the Ionic Conductivity according to Literature

Generally, the ionic conductivity depends on the porosity and several methods have been developed
to compare samples with different densities. [184,248,249] Pérez-Coll et al., [298] Tian and Chan [194]

and Reis et al. [430] reported an increase in bulk conductivity for samples with larger grain sizes
and therefore higher densities. However, Singh et al. [404] reported a decrease in bulk conductivity
with larger grain size due to an increase in grain boundary conductivity. Sánchez-Bautista et al. [69]

showed for Ce0.9Dy0.1O1.95 slightly higher bulk conductivity at lower sintering temperature and
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grain size. In this work, influences of the porosity (Fig. 4.2) on the ionic conductivity are assumed
to be small especially for samples sintered above 1260 °C or with sintering durations above 24 hours
at 1190 °C.

Beyond that, the ionic conductivity of the bulk domain is assumed to be independent of macro-
scopic structure. Zhang et al. [300] and Yan et al. [301] showed that the bulk conductivity is inde-
pendent of grain size for samples with densities of at least 95% (Fig. 8.6 left). Sánchez-Bautista et
al. [69] showed for Ce0.85Dy0.15O1.925 and Ce0.8Dy0.2O1.9 a bulk conductivity independent of sinter-
ing temperature and grain size. Beyond that, it may be possible that samples are not fully oxidized
due to short sintering at low temperatures. Especially the samples sintered at 1110 °C might be
oxygen deficient (non-stoichiometric ceria, see Chapter 2.1.3).

The ionic conductivity of the grain boundary domain was reported to be both increasing [298,404]

and decreasing [69,297,300,301] with larger grain sizes. Pérez-Coll et al. [298] attributed the increase in
macroscopic grain boundary conductivity with increasing grain size to the brick layer model (see
Chapter 4.1.5). With increasing grain size, the total number of grains decreases. For a constant
microscopic grain boundary resistivity and thickness, the macroscopic grain boundary conductivity
increases with increasing grain size. Ding et al. [297] and Sánchez-Bautista et al. [69] attributed the
decrease in macroscopic grain boundary conductivity with increasing grain size to the space charge
zones: For larger grain sizes, the space charge potential increases. Here, the depletion of oxygen
vacancies near the grain boundary increases and the macroscopic grain boundary conductivity de-
creases. Zhang et al. [300] argued that, for larger grain sizes, the area of the grain boundary decreases.
Therefore, the blocking impurity concentration increases and the macroscopic grain boundary con-
ductivity decreases. Finally, Tian and Chan [194] found an increase followed by a decrease in grain
boundary conductivity with increasing grain size. For the latter they assumed for large grain sizes,
due to the high sintering temperatures, either that the dopant segregates to the grain boundaries
and associates with oxygen vacancies or a continuous Si-rich glassy phase in the grain boundaries
reduces the conductivity.

Ionic conductivities in this work and literature show strong scattering but are generally in agree-
ment (Fig. 8.6 left).

The microstructure has only a minor influence on the activation enthalpy for the bulk and grain
boundary domain according to literature (Fig. 8.6 right). [297,298,300,301] However, different sinter-
ing methods lead to significantly different activation enthalpies. [297] Van Dijk and Burggraaf [323]

reported that in Gd doped zirconia the activation enthalpy for the grain boundary conductivity is
independent of composition, grain size and preparation method.

The activation enthalpy in this work is in agreement with literature, where scattering occurs
especially between different preparation methods.
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Figure 8.6: Conductivity at 267 °C and activation enthalpy according to impedance experiments as
a function of grain size. Bulk and grain boundary (gb) domain is shown. Lines are a guide to the
eye only.

The Microscopic Grain Boundary Conductivity

The grain boundary thickness δgb and the microscopic grain boundary conductivity were calculated
according to Eqs. 4.9 and 4.10 (Fig. 8.7). While the pseudo-capacitance of the bulk domain is
independent of the grain size, the pseudo-capacitance of the grain boundary domain increases with
increasing grain size according to literature. [176] The behavior of the grain boundary capacitance is
unexpected, since the number of grain boundaries decreases with increasing grain size leading to a
decrease of the macroscopic grain boundary capacitance for similar grain boundary thicknesses.

A grain boundary thickness between 0.8 nm and 7.7 nm was calculated, the thickness mainly
decreases with increasing grain size. Similar thicknesses were reported in literature with (3±0.5) nm
for Ce0.8Gd0.2O1.9, [176] and 1.2 ± 0.5 nm for Ce0.9Gd0.1O1.95, [298] or between 3 nm and 50 nm for
differently doped ceria. [306] For nanocrystalline-structured doped ceria, also smaller grain boundary
thicknesses can be found. [338]

The microscopic grain boundary conductivity is up to three orders of magnitude smaller than
the macroscopic grain boundary conductivity. Both show a similar behavior with increasing grain
sizes above 0.5 µm, as the influence of the grain boundary thickness is small. The microscopic
grain boundary conductivity decreases strongly from 35 nS/cm to about 1 nS/cm at 173 °C for
increasing grain sizes up to 0.6 µm and is independent of grain size for larger grain sizes. Christie
and van Berkel [176] also report a strong decrease followed by similar microscopic grain boundary
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Figure 8.7: Macroscopic and microscopic conductivity at 173 °C according to impedance experiments
as well as grain boundary thickness for different grain sizes. Lines are a guide to the eye only.

conductivities for increasing grain sizes. Large microscopic grain boundary conductivities were also
reported in doped zirconia by van Dijk and Burggraaf. [323] The reason for this behavior may be the
serial brick layer model, which cannot be used for small grain sizes. For larger grain sizes, Christie
and van Berkel [176] explain a small increase in microscopic grain boundary conductivity based on
the decreasing number of grain boundaries for a constant grain boundary thickness. In this work,
the fluctuation of the macroscopic grain boundary conductivity propagates in the microscopic grain
boundary conductivity, probably caused by several influences that superimpose.

In fact, different sintering durations and sintering temperatures lead to different bulk conductivities.
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8.2 The Influence of Doping

8.2.1 Simulating the Ionic Conductivity
Ionic conductivities for different rare-earth doped ceria were calculated using KMC simulations
based on the migration energy model c1+sd [ds] with an interaction radius of 5.41 Å, which was
developed in Chapter 7.2. In Fig. 8.8, ionic conductivities at 500 °C for Lu, Yb, Y, Gd, Sm, Nd and
La doped ceria are compared. A heat map of the data can be found in the appendix (Fig. 9.11). The
conductivity depends strongly on temperature as shown in Fig. 8.9 for 267 °C and 600 °C. Error
bars show the sample standard deviation σs of 10 simulations, which indicates the expected range
for the next simulation. The error for the true conductivity value is significantly smaller.
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Figure 8.8: Ionic conductivity of rare-earth doped ceria at 500 °C with RE = Lu, Yb, Y, Gd, Sm,
Nd and La calculated using KMC simulations. Lines are a guide to the eye only.

The KMC simulations predict smaller conductivities than found in most experiments. This may be
caused by underestimated attempt frequencies or overestimated migration energies in the simulation.
Alternatively, the separation of bulk and grain boundary conductivity in experiments may not be
sufficient. Especially for impedance spectroscopy experiments, the bulk contributions cannot be seen
at 500 °C due to the limited frequency range in experiments and is often extrapolated. Therefore, in
this work, impedance measurements at low temperature were performed for Sm (Chapter 8.2.2), Gd
(Chapter 8.2.3) and Lu doped ceria (Chapter 8.2.5) and compared with simulations (Chapter 8.2.6).

The ranking order for highest conductivity between different dopants is similar for different dopant
fractions in simulations and experiments, despite the strong scattering. For low dopant fractions,
measurements of Nd doped ceria often show higher conductivities than measurements of Gd doped
ceria. For large dopant fractions, this ranking order is reversed similar to the KMC simulations.
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Figure 8.9: Ionic conductivity of rare-earth doped ceria at 267 °C and 600 °C with RE = Lu, Yb,
Y, Gd, Sm, Nd and La calculated using KMC simulations. Lines are a guide to the eye only.

Similarly, measurements of Y doped ceria often show lower conductivities up to x = 0.2. The
largest ionic conductivity is found for Sm doped ceria, dopants with smaller and larger ionic radii
lead to lower maximal ionic conductivities. Conductivities of Gd and Sm doped ceria are high in
simulations and experiments and are further investigated in Chapter 8.2.3. In the next chapter, a
detailed comparison for x = 0.1 and 0.2 is performed.

All calculated rare-earth doped ceria show the typical in- and decrease in ionic conductivity
with increasing dopant fraction as found in experiments (Chapter 2.4.2). The dopant fraction lead-
ing to the maximum in conductivity xmax (Chapter 2.4.3) and the slope of the curves vary for
different dopants. For most dopants, the characteristic maximum xmax is around 0.1. An excep-
tion is Lu doped ceria due to its migration edge energies, which are smaller than in pure ceria
(cp. Fig. 7.6). Small errors in the KMC input parameters cause a significant difference in xmax.
Otherwise, the dopant fraction leading to the maximum in conductivity is in agreement with ex-
periments (Table 2.3). Additionally, large dopants like Nd and La lead to small xmax in simulations
and experiments. [163] Compared to KMC simulations in literature, a better agreement for xmax with
experiments is found in this work. For example, Dholabhai et al. predict at 500 °C a maximum for
Ce0.8Sm0.2O1.9 and at 400 °C a maximum for Ce0.8Gd0.2O1.9. [224,286] Grope et al. predict at 620 °C
a maximum for Ce0.85Y0.15O1.925. [287] In the old model 2014, a maximum for Ce0.86Y0.14O1.93 at
527 °C was predicted. [55] In both this work and experiments (Table 2.3) the dopant fractions leading
to the maximum in conductivity is smaller.

For 600 °C (Fig. 8.9b), all conductivities increase by a factor of about 2.5–4 (see also Inaba and
Tagawa) [31] due to the Boltzmann probability. The increase in conductivity is higher for higher
dopant fractions since the influence of blocking and trapping decreases with temperature. Though
the (randomly ordered) cation configuration is independent of temperature, the number of jump
attempts through Ce-Ce edges increases because the larger thermal energy increases the probability
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for oxygen vacancies to leave the association radius of the dopant ions (trapping). Furthermore, the
probability of jumps through doped migration edges, which have a larger migration energy (block-
ing), is increased. [55] As a result, the maximum of the simulated ionic conductivity is shifted to
larger dopant fractions, which is in agreement with experimental data (see Chapter 2.4.3). Espe-
cially Y and Gd, which possess strong trapping, lead to high ionic conductivities at higher dopant
fractions. At low temperature, the effects reverse and the dopant fractions leading to the maximum
in conductivity decrease.

x = 0.1 and 0.2

Similar to literature, the ionic conductivity for a single dopant fraction can be investigated. Though
often the total conductivity is presented in literature (Fig. 2.8), only the bulk conductivity represents
the inherent property of the doped material largely without influences of the microstructure of the
sample. The bulk conductivity in experiments at 400 °C for x = 0.1 and 0.2 was summarized in
Fig. 2.12.

For comparison, simulated ionic conductivities are shown in Fig. 8.10. The ionic conductivity
increases with increasing dopant radius up to Sm and decreases with increasing dopant radius for
larger dopants. For x = 0.1 and 0.2, Sm is the optimal dopant with the highest conductivity as
already seen in Fig. 8.8 and 8.9.

The bulk conductivity in experiments is about factor 2–4 (x = 0.1) or 2–6 (x = 0.2) larger than
the simulated conductivity (Fig. 8.10c, 8.10d and 9.12 in the appendix). An exception is Nd doped
ceria, whose experimental values scatter over more than an order of magnitude. The ranking order
between different dopants is similar in experiments and simulation.

In Fig. 8.10 a linear relationship between the ionic radius and the conductivity (solid lines) or
the logarithm of the conductivity (dashed lines) is shown. If the conductivity depends linearly on
the ionic radius, a relation between lattice distortions and the ionic conductivity can be assumed.
If the logarithm of the conductivity depends linearly on the ionic radius, a relation between the
activation enthalpy and the ionic conductivity can be assumed. In fact, both relations were already
reported in literature: First theories postulated that the highest oxygen ion conductivity occurs
for dopants, which result into the least distortion of the crystal lattice as discussed in in Chap-
ter 2.5.2. [25,30,33,34,167,226–229] A relation between the activation enthalpy and the ionic conductivity
was investigated in Chapter 2.4.4. [163,164,167,169,196]

The results in this work and literature (cp. Chapter 2.4) suggest a linear relationship between
ionic radius and conductivity. A fit for the linear relationship is shown with the red and blue line
in Fig. 8.10. It should be noted that the dashed lines show a linear relationship between the ionic
radius and the logarithm of the conductivity. For the simulated conductivity, clearly the former
leads to a better regression result.

183



8 Oxygen Ion Conductivity

0 . 9 5 1 . 0 0 1 . 0 5 1 . 1 0 1 . 1 5- 1 . 4

- 1 . 2

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

L u

Y b

Y

G d
S m N d

L a

log
(σT

/(S
·K/

cm
))

i o n i c  r a d i u s  o f  R E 3 +  ( Å )

(a) simulation, x = 0.1

0 . 9 5 1 . 0 0 1 . 0 5 1 . 1 0 1 . 1 5- 1 . 3

- 1 . 2

- 1 . 1

- 1 . 0

- 0 . 9

- 0 . 8

- 0 . 7

- 0 . 6

- 0 . 5

L u

Y b

Y

G d
S m

N d

L alog
(σT

/(S
·K/

cm
))

i o n i c  r a d i u s  o f  R E 3 +  ( Å )

(b) simulation, x = 0.2

0 . 9 6 0 . 9 8 1 . 0 0 1 . 0 2 1 . 0 4 1 . 0 6 1 . 0 8 1 . 1 0 1 . 1 2
- 1 . 6 8

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2
L u  Y b       E r      Y  D y          G d   E u   S m             N d

 O m a r  e t  a l .  ( 2 0 0 9 )
 O m a r  e t  a l .  ( 2 0 0 6 )
 Z h a n g  e t  a l .
 S a n c h e z - B a u t i s t a  e t  a l .
 T i a n s h u  e t  a l .
 F u e n t e s  a n d  B a k e r
 H u a n g  e t  a l .
 R e d d y  a n d  K a r a n
 C i o a t e r a  e t  a l .
 L i  e t  a l .
 A n e f l o u s  e t  a l .
 S t e p h e n s  e t  a l .
 Z h u  e t  a l .

log
(σT

/(S
·K/

cm
))

i o n i c  r a d i u s  o f  R E 3 +  ( Å )

(c) experiment, x = 0.1

1 . 0 0 1 . 0 2 1 . 0 4 1 . 0 6 1 . 0 8 1 . 1 0 1 . 1 2 1 . 1 4 1 . 1 6 1 . 1 8
- 1 . 8 0

- 0 . 6

- 0 . 5
- 0 . 4
- 0 . 3
- 0 . 2
- 0 . 1
0 . 0
0 . 1
0 . 2

Y  D y        G d         S m         N d                      L a

 P é r e z - C o l l  e t  a l .
 Z h a n g  e t  a l .
 S a n c h e z - B a u t i s t a  e t  a l .
 T i a n s h u  e t  a l .
 L i  e t  a l .
 A n e f l o u s  e t  a l .
 S t e p h e n s  e t  a l .
 Z h u  e t  a l .

log
(σT

/(S
·K/

cm
))

i o n i c  r a d i u s  o f  R E 3 +  ( Å )

(d) experiment, x = 0.2

Figure 8.10: Simulated and experimental ionic conductivity (as already shown in Fig. 2.12)
of Ce1–xRExO2−x/2 at 400 °C for x = 0.1, [64,69,75,76,165,166,168,174,177,178,182,183,185] and
0.2. [64,69,75,76,168,169,182,183] The lines show a possible linear relationship between the ionic ra-
dius and the conductivity (solid lines) or the logarithm of the conductivity (dashed lines).
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Trapping and Blocking

The ascending slope of σ(x) (Fig. 8.8) is small for small dopants (e.g. Lu, Yb and Y) and large for
large dopants (e.g. La), obviously curve progression and ionic radius are related. This is not surpris-
ing, since the association energies (Chapter 5.1.1) and migration energies from DFT calculations
(Chapter 7.1.2), which were used in the KMC simulations, are related to the dopant radius. For
further investigations, the in- and output parameters of the KMC simulations are categorized and
compared.

The migration energy model for the KMC simulations uses three migration edge energies and six
association energies as input parameters. Changes in the migration energy compared to pure ceria
can be classified as symmetric (blocking) and asymmetric contributions (trapping) as described in
Chapter 7.2.3.

Trapping and blocking are used to describe the experimental ionic conductivity as discussed in
Chapter 2.5.1 and theoretical studies. [54,55,287,429] Trapping describes the influence of the associ-
ation between dopant ions and oxygen vacancies on the migration energy. Migration barriers for
jumps of the migrating oxygen vacancy away from the associating dopant are higher than in pure
ceria, while jumps to the dopant are even more favored. Vacancies appear more often in nearest
neighborhood to the defect because they are trapped. Blocking describes energy contributions that
increase the migration energy for both the forward jump and the backward jump. Oxygen vacancies
are kinetically hindered and therefore blocked. The trapping decreases for larger ionic radii while
the blocking effect increases.

In Chapter 7.3 the influence of blocking, trapping and V-V interaction on the ionic conductivity
of Sm doped ceria was shown. For this purpose, increased symmetric migration barriers due to
dopants around the jump center or association energy contributions due to RE-V association or
V-V interaction were neglected. It was found that V-V interactions increase the conductivity as
otherwise a strong association of dopants and vacancies takes place.

Dopants determine blocking and trapping. Both decrease the conductivity. The dopant fraction
leading to the maximum in conductivity is especially limited by blocking.

While these observations were made for Sm doped ceria, similar effects might be found for other
rare-earth dopants. The investigation of blocking and trapping is a main goal of this work as they
are the only factors that distinguish the conductivity of different rare-earth dopants. Both effects
are essential for the understanding of the underlying mechanism that determines the magnitude of
the oxygen ion conductivity and the optimal dopant concentration.

Therefore, KMC simulations at 600 °C were performed for different rare-earth dopants with all
(Fig. 8.11a) or only selected interactions as discussed in Chapter 7.3. Either trapping (Fig. 8.11b)
or blocking (Fig. 8.11c) was neglected. For the no-trapping case, the blocking effect can also be
restricted to the Ce-RE edge by setting the RE-RE edge energy for all dopants to the largest
observed value of 1.29 eV. Therefore, dopants differ only by the Ce-RE edge energy (Fig. 8.11d). For
the no blocking case, the trapping effects can also be restricted to a 1NN RE-V interaction range by
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(d) only different Ce-RE edge
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(e) only different 1NN↔2NN RE-V jump

Figure 8.11: Simulated ionic conductivity of rare-earth doped ceria at 600 °C without considering
RE-V interactions around the start and destination position (left) or without considering different
migration edges (right). Lines are a guide to the eye only.
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terminating at the 2NN RE-V interaction. Therefore, dopants differ only by the asymmetric energy
contribution to the 1NN↔2NN RE-V jump (Fig. 8.11e).

KMC simulations with (Fig. 8.11a) and without trapping (Fig. 8.11b) show the same ranking order
of xmax between different rare-earth doped ceria. For Gd doped ceria, no change in xmax is found.
Small dopants have lower xmax, large dopants have higher xmax with a change up to ∆x = ±0.04. If
the blocking effect is also restricted and dopants differ only by the Ce-RE edge energy (Fig. 8.11d),
hardly any change in the conductivity is found. An exception is Yb doped ceria as it has the same
Ce-RE edge energy as Gd doped ceria (Fig. 7.6), probably caused by the chosen DFT potential. A
comparison between the Ce-RE edge energy and the dopant fraction of the maximum in conductivity
is shown in Fig. 8.12 (left). The dopant fraction of the maximum decreases with larger blocking: For
higher dopant fractions, the amount of jump configurations influenced by blocking increases. Larger
blocking leads to lower conductivities and, therefore, with larger blocking the maximum appears at
lower dopant fractions. Hence, xmax is determined by the Ce-RE edge energy.

However, the number of jumps through doped edges does not change much for larger dopant
fractions. In KMC simulations of an earlier work at 700 K, between x = 0.02 and 0.14 the number
of jumps through Ce-Y edges increases totally only about 4% (35% to 39%). [55] Jumps through
Y-Y edges are rare (0.04% to 0.14%). Significantly higher are the number of jump attempts, which
are not weighted by the the Boltzmann probability p = e−

∆Emig
kBT (cp. Chapter 3.2.2), with 45%

to 54% (Ce-Y) and 2% to 11% (Y-Y). The large migration energy of doped edges decreases the
number of performed jumps and therefore the ionic conductivity.

The ionic conductivity is high compared to KMC simulations with trapping. The ranking order
of conductivities at all dopant fractions is equivalent to the ranking order of Ce-RE edge energies.
The ionic conductivity decreases with increasing Ce-RE migration edge energy or rather increasing
dopant radius. An exception is Yb doped ceria, due to its low Ce-RE migration edge energy probably
caused by the chosen DFT potential.

Blocking mainly limits the dopant fraction of the maximum.
Here, the Ce-RE edge energy is decisive.

KMC simulations at 600 °C with (Fig. 8.11a) and without blocking (Fig. 8.11c) show nearly the
same ranking order of conductivities at all dopant fractions. If the trapping effect is also restricted
and dopants differ only by the asymmetric contribution to the 1NN↔2NN RE-V jump (Fig. 8.11e),
the ranking order of conductivities changes significantly and is equivalent to the ranking order of the
absolute value of the |2NN-1NN| RE-V association energy difference (Fig. 5.1). A comparison between
association energy difference and ionic conductivity of the maximum is shown in Fig. 8.12 (right).
The ionic conductivity decreases with increasing absolute value of the |2NN-1NN| RE-V association
energy difference or rather increasing dopant radius. Sm and La doped ceria have similar conduc-
tivities though in Sm doped ceria the 1NN RE-V association and in La doped ceria the 2NN RE-V
association is favored. Large |2NN-1NN| RE-V association energy differences lead to steep slopes. If
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again the full trapping effect is considered and therefore 2NN→3NN, 2NN→4NN and 4NN→4NN RE-V
jumps have different migration energies, the conductivities decrease with increasing 2NN RE-V asso-
ciation energy or rather |3NN-2NN| RE-V association energy difference. The decrease occurs especially
at large dopant fractions if the |2NN-1NN| RE-V association energy difference is small. The decrease
occurs especially at small dopant fractions if the |2NN-1NN| RE-V association energy difference is
large. In other words, if the conductivity in Fig. 8.11e is high, the conductivity in Fig. 8.11c is
smaller, especially at large dopant fractions. For intermediate 2NN RE-V association energies, even
an increase in conductivity at large dopant fractions can be found. This results into crossings in
the ranking order of conductivities. Hence, the ranking order of conductivities is determined by the
|2NN-1NN| and |3NN-2NN| RE-V association energy differences.

The dopant fraction leading to the maximum in conductivity is similar for different dopants if only
the |2NN-1NN| RE-V association energy differences are considered. An exception is Lu doped ceria due
to strong trapping. Including the |3NN-2NN| RE-V association energy differences increases xmax for
large 2NN-1NN RE-V association energy differences and decreases xmax for negligible or negative 2NN-
1NN RE-V association energy differences. Here, Sm and La doped ceria show different behavior. This
is shown in Fig. 8.12 (left). Surprisingly, the change in xmax seems to be independent of the 3NN-2NN

RE-V association energy difference. The dopant fraction leading to the maximum in conductivity is
only directly controlled by the formation of RE-V associates if vacancies are already decelerated in
the vicinity of the dopant due to the 2NN association energy.

Though the resulting ranking order of xmax between different rare-earth doped ceria is similar
to the final KMC simulations, the values of xmax are too large. Figure 8.12 (left) shows the dopant
fraction of the maximum if only blocking is considered. Large 2NN-1NN RE-V association energy
differences increase and small 2NN-1NN RE-V association energy differences decrease xmax. Therefore,
the dopant fraction leading to the maximum in conductivity is influenced by both trapping and
blocking, but dominated by blocking.

Trapping mainly limits the maximum ionic conductivity.
Here, the association energy differences are decisive.

In summary, both trapping and blocking decrease the conductivity. However, the ranking order
of conductivities is only reproduced by trapping. The dopant fraction of the maximum xmax is
limited by blocking as neglecting the RE-V association barely influences the dopant fraction of the
maximum. For 500 °C, similar observations can be made (Fig. 9.13 in the appendix). In literature,
the common assumption is made that association between oxygen vacancies and dopants cause the
maximum in oxygen ion conductivity (Chapter 2.5.1). On the one hand, the result of this work
indeed shows that trapping creates the ranking order of conductivities between different dopants
and even has an influence on xmax. On the other hand, this work shows that the dopant fraction
leading to the maximum in conductivity is limited by blocking. The optimal dopant concentration
cannot be predicted based on trapping. This defies the assumption in literature.
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Figure 8.12: Relationship between blocking and trapping and the simulated ionic conductivity for
different dopants at 600 °C. A comparison between the Ce-RE migration edge energy (blocking)
and the dopant fraction of the maximum (left) or the the RE-V association energy difference
(trapping) and the ionic conductivity of the maximum (right) is shown. For comparison, inter-
actions are switched off individually. Lines are a guide to the eye only.

Blocking is strongly underrated in literature.
The largest conductivity can be found if the absolute values of the association energy differences

are small. The 2NN↔1NN RE-V association leads to the formation of associates (either 1NN or 2NN). As
a result, vacancies are held by the dopants as their movement is hindered. The long-range 3NN↔2NN

RE-V association pulls vacancies into the vicinity of dopants. Both need to be small for a large ionic
conductivity.

Not only a low associate formation but also a low vacancy pull
is important for a large ionic conductivity.

For this purpose, the associate formation can be described as a hold of the vacancy and the
vacancy pull as a catch of the vacancy, resulting in the term catch-and-hold principle. Sm with
medium blocking and medium trapping has the largest maximum ionic conductivity. If the right
value of the maximum ionic conductivity should be predicted, both trapping and blocking should
be included.

Activation Enthalpy

Macroscopic activation enthalpies and experimental attempt frequencies deducted from the KMC
simulations were calculated at 500 °C and 600 °C (Fig. 8.13) according to Eqs. 2.3 and 2.4. It should
be noted that the input parameter for the KMC simulations like the microscopic attempt frequency
(here similar for all ionic configurations) and migration energy model are independent of dopant
fraction and temperature. No reduction of ceria was taken into account.

The activation enthalpy at low dopant fractions is equal to the migration energy in pure ceria
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Figure 8.13: Apparent attempt frequency (left) and activation enthalpy (right) for the simulated
conductivity of rare-earth doped ceria at 500 °C and 600 °C. Lines are a guide to the eye only.

of about 0.47 eV. The activation enthalpy increases with increasing dopant fraction. Here, RE-V
and V-V interactions increase the appearing migration energies. Contrary to literature results (cp.
Fig. 2.16), no minimum in the activation enthalpy can be found. Impurities, reduction dominated
conductivities or association could explain the higher activation enthalpies in experiments at low
dopant fractions (cp. Chapter 6.3.2). Activation enthalpies in simulations are smaller than in ex-
periments (Fig. 9.14 in the appendix). A non-sufficient separation of bulk and grain boundary
conductivity in experiments may lead to overall higher activation enthalpies. In simulations, large
and small dopants have high activation enthalpies. Dopants that lead to high conductivities have
low activation enthalpies (Sm and Nd). Similarly, the change in rank of dopants at a specific con-
centration correlates in conductivity and activation enthalpy. Both effects are expected since the
activation enthalpy dominates the conductivity according to Eqs. 2.3 and 2.4. The ranking order
between different dopants is similar in simulations and experiments; even the crossing between La
and Gd doped ceria at low dopant fractions is found in simulations similar to the work of Faber
et al. [163] Exceptions are low activation enthalpies in simulations for Nd doped ceria at all dopant
fractions and high activation enthalpies in simulations for La doped ceria at high dopant fractions.
However, for the former, the ionic conductivity strongly scatters between different groups and, for
the latter, only few activation enthalpies are reported.

Similar to the conductivity, the activation enthalpy can be calculated for KMC simulations with
all (Fig. 9.15a in the appendix) or only selected interactions. Either trapping (Fig. 9.15b) or blocking
(Fig. 9.15c) was neglected. Both influence the final activation enthalpy. Again, the no-trapping case
(Fig. 9.15b) and the only different Ce-RE edges case (Fig. 9.15d) are similar. Here, the activation
enthalpy increases with increasing Ce-RE edge energy and increasing dopant fraction. Again, the
no blocking (Fig. 9.15c) and the only different 1NN↔2NN RE-V jump case (Fig. 9.15e) differ. Here,
the activation enthalpy increases with increasing |2NN-1NN| and 3NN-2NN RE-V association energy
differences and increasing dopant fraction. Again, the increase occurs especially at large dopant
fractions if the |2NN-1NN| RE-V association energy difference is small (e.g. for Nd doped ceria).
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8.2 The Influence of Doping

Similar to the maximum ionic conductivity,
the activation enthalpy is dominated by trapping.

The apparent, average or experimental attempt frequency at low dopant fractions is equal to the
microscopic attempt frequency of about 1.47 · 1012 s−1, which was used for the KMC simulations.
Again, contrary to experiments (cp. Fig. 9.16 in the appendix), the apparent attempt frequency is low
and no minimum at low dopant fractions was found. Impurities, reduction dominated conductivities
or association could explain the higher activation enthalpies in experiments at low dopant fractions
(cp. Chapter 6.3.2). Similar to the activation enthalpy, the experimental attempt frequency increases
with increasing dopant fraction. In fact, the experimental attempt frequency can be shown as a
function of the activation enthalpy (Fig. 8.14 left).
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Figure 8.14: Apparent attempt frequency as a function of activation enthalpy for simulations at
500 °C and 600 °C (left). A fit according to Eq. 6.5 for infinite large temperature (constant
attempt frequency) and 3000 K is shown. Experimental association energy calculated from the
activation enthalpy difference between 500 °C and 600 °C as well as 267 °C and 500 °C (right).
For comparison, a 80% confidence interval of a linear fit is shown.

For low dopant fractions and activation enthalpies, the apparent attempt frequency is indepen-
dent of activation enthalpy. For large dopant fractions and activation enthalpies, an increase of
the apparent attempt frequency with increasing activation enthalpy is found as discussed in Chap-
ter 6.3.2 according to Eq. 6.5 with a high temperature of 3000 K. The correlation verifies that the
apparent attempt frequency is changed by the distribution of appearing migration energies even
for doped ceria. The dependence of the apparent attempt frequency on the activation enthalpy still
depends on the type of dopant. Therefore, activation enthalpy and apparent attempt frequency
depend differently on the distribution of appearing migration energies.

For large and small dopants, the change between both regimes takes place at high activation
energies (Ha = 0.73 eV for Yb and 0.76 eV for La). For dopants that lead to high conductivities,
the change takes place at low activation energies (Ha = 0.66 eV for Sm and Nd). Large and small
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dopants have high attempt frequencies, dopants that lead to high conductivities have low attempt
frequencies. Though high conductivities can be caused by high attempt frequencies as well as low
activation enthalpies, the KMC simulations show that for differently doped ceria especially low
activation enthalpies are important. The low apparent attempt frequencies for Sm doped ceria are
a result of these low activation enthalpies.

The change in the attempt frequency behavior appears around x = 0.12 (Yb) and 0.22 (La). The
increase in attempt frequency at higher dopant fractions can also be seen in Fig. 8.14. This increase
appears even without considering trapping effects or the RE-RE edge energy as shown in Fig. 9.16d
in the appendix, where a minimum in attempt frequency appears. The transition between the two
regimes where the attempt frequency is either independent or dependent on the activation enthalpy
is therefore controlled by the Ce-RE edge energy. If vacancies are blocked, the apparent attempt
frequency increases as already demonstrated using a simple model in Chapter 6.3.3.

If only the Ce-RE edge is considered, the attempt frequency de- and increases with increasing
dopant fraction. Starting from the KMC input value 1.47·1012 s−1, the decrease appears especially for
large Ce-RE edge energies. It has already been shown that for single vacancy and increasing blocking
the apparent attempt frequency increases (Chapter 6.3.3). The observed decrease is, therefore, a
concentration effect. The number of vacancies increases with increasing dopant fraction, but many
of them are blocked. The diffusion of the remaining free vacancies is summed up relative to the
number of all vacancies. If, theoretically, all vacancies would be blocked on a microscopic level, the
macroscopic attempt frequency and especially the macroscopic activation enthalpy would increase.
This happens at intermediate and large dopant fractions. The no-trapping case is similar (Fig. 9.16b).

Again, the no blocking (Fig. 9.16c) and only different 1NN↔2NN RE-V jump case (Fig. 9.16e)
differ. For the latter and a negligible |2NN-1NN| RE-V association energy difference (e.g. for Nd
doped ceria), the attempt frequency is similar to Lu and Yb doped ceria of the only different Ce-
RE edge case. The decrease in attempt frequency for intermediate dopant fractions is obviously also
caused by considering only V-V interactions, their behavior similar to site-blocking and the resulting
blocking of selected diffusion paths. If |2NN-1NN| and 3NN-2NN RE-V association energy differences
increase, the attempt frequency increases similar to the activation enthalpy.

Macroscopic activation enthalpies and experimental attempt frequencies for the KMC simulations
can also be calculated for lower temperatures, e.g. between 267 °C and 600 °C as shown in Fig. 9.17
in the appendix. A shift to mostly higher experimental attempt frequencies and higher activation
enthalpies can be found. This is expected since less thermal energy is available for successful jumps
with high migration barriers, which could already be shown in Chapter 6.3.3 using a simple migration
energy model. For Lu doped ceria, a maximum in activation enthalpy appears at low dopant fractions.
This results in a minimum at low dopant fractions, which is promising as Faber et al. found a
minimum in activation enthalpy for several dopants at low dopant fractions. The high activation
enthalpy at very low dopant fractions could be reproduced in simulations by including impurities
and reduction dominated conductivities for even smaller dopant fractions. [163]
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8.2 The Influence of Doping

For the temperature dependence of the conductivities at low temperature, the same behavior of
the apparent attempt frequency as a function of activation enthalpy can be found with a shift to
higher experimental attempt frequencies.

Experimental Association Enthalpy

The difference in activation enthalpy for the low and high temperature region can be used to calculate
an experimental association energy as proposed in experiments (see Chapter 2.4.4). The resulting
experimental association energies are small. On the one hand, some experiments show no kink in
the Arrhenius behavior of the conductivity at all. On the other hand, association energies up to
e.g. 0.47 eV for Ce0.7Gd0.3O1.85 were reported. [168] Omar et al. performed impedance spectroscopy
experiments on Ce0.9RE0.1O1.95 and calculated the association energy as activation enthalpy dif-
ference below and above 475 °C, which is close to the chosen temperature of 500 °C in this work.
Association energies in the same order of magnitude were found. [166] In KMC simulations, the asso-
ciation energy does not increase if lower temperatures are considered. For example, the experimental
attempt frequencies and activation enthalpies between 267 °C and 368 °C as well as 267 °C and
500 °C for Lu doped ceria are similar.

The resulting experimental association energies depend strongly on the dopant fraction. For Lu,
Nd and La doped ceria, a decrease in association energy with increasing dopant fraction was found.
For Gd and Sm doped ceria, the association energy is nearly independent of dopant fraction. In
experiments, a decrease (x ≤ 0.03) and increase (0.03 ≤ x ≤ 0.4) in association energy with
increasing dopant fraction was found (see Chapter 2.4.4). This experimental result is contradictory
to the KMC simulations. However, other experiments show no kink in the Arrhenius behavior of
the conductivity at all.

The resulting experimental association energies are even negative for large dopant fractions of
Lu, Nd and La doped ceria. This means that the activation enthalpies increase with increasing
temperature, which is in conflict with the assumption in experiments that trapped vacancies are
freed at high temperature.
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8.2.2 Sm Doped Ceria
For experimental studies of Sm doped ceria, the total conductivity for polycrystalline materials
for several dopant fractions was shown in Chapter 2.4.1. Bulk conductivities for multiple dopant
fractions were presented only by few groups. Zhan et al. [74] investigated polycrystalline ceria using
impedance spectroscopy and found a maximum conductivity for x = 0.1 for 250–550 °C. Sanghavi et
al. [179] investigated single crystal thin films, which might share characteristics with the total domain
due to its thin film properties, and found a maximum conductivity for x = 0.15 for 500–700 °C.
Both groups only chose very few dopant fractions with a spacing of ∆x ≥ 0.08.

In this work, a large number of compositions for Sm doped ceria are investigated in experiments
with a spacing of ∆x = 0.025. Additionally, 7% Sm doped ceria was prepared and measured by Ger-
ald Dück. Using impedance spectroscopy, bulk and (macroscopic) grain boundary contributions have
been separated according to Chapter 4.1.5. In Fig. 8.15, the temperature dependence or Arrhenius
behavior of the ionic conductivity is shown.
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Figure 8.15: Arrhenius behavior of the ionic conductivity in Ce1–xSmxO2–x/2 according to
impedance experiments.

The bulk conductivity shows the typical in- and decrease in conductivity with increasing dopant
fraction (Fig. 8.16). A global maximum in the ionic conductivity can be found for x = 0.07. Mea-
surements show at x = 0.1 a local maximum, which may be in the error range of the measurement
and is therefore not significant. Above 200 °C, the bulk conductivity of both investigated Sm doped
ceria compositions is similar. This is in agreement with the measurements of Zhan et al., who found
a maximum for x = 0.1. [74]

The separation of the grain boundary and electrode semicircle in the impedance spectrum of Sm
doped ceria with x ≥ 0.1 is very difficult. Therefore, all macroscopic grain boundary conductivities
with x ≥ 0.1 may have a systematic error of one order of magnitude. Observed trends show a high
degree of uncertainty. However, maxima at x = 0.1 and 0.15 and a decrease (for low temperatures)
or increase (for high temperatures) of the conductivity between x = 0.225 and 0.25 can be observed.
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Figure 8.16: Ionic conductivity of Sm doped ceria according to impedance experiments. Lines are a
guide to the eye only.

The latter is even true for different fitting methods. The result is in agreement with literature, Zhan
et al. found a maximum in the grain boundary conductivity for x = 0.1 for low temperature. [74]
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Figure 8.17: Experimental attempt frequency (left) and activation enthalpy (right) of Sm doped
ceria for all temperatures (solid symbols) or low and high temperatures according to impedance
experiments. Lines are a guide to the eye only.

The experimental attempt frequency and activation enthalpy extracted from the Arrhenius be-
havior of the ionic conductivity according to Eqs. 2.3 and 2.4 is shown in Fig. 8.17. Several patterns
similar to other experiments (Chapter 2.4.4 and Fig. 9.18) can be observed: Experimental attempt
frequencies and activation enthalpies are higher than in the KMC simulations. A de- and increase
with increasing dopant fraction with a minimum at low dopant fractions can be found. Values for the
high temperature region are always smaller than for the low temperature region. A large association
energy compared to KMC simulations of about 0.1 eV is found.

In conclusion, Ce0.93Sm0.07O1.965 leads to the largest bulk conductivity. An increase in the dopant
fraction leading to the maximum in conductivity with increasing temperature can be found. A
comparison of experimental and simulated conductivities is shown in Chapter 8.2.6.
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8.2.3 The Best Dopant: Sm or Gd?
For a long time it has been discussed in literature, which rare-earth doped ceria, using only a single
dopant, leads to the best ionic conductivity in experiments. [25] In fact, there is no short answer to
this question since the ionic conductivity not only depends on the kind of dopant but also on the
dopant fraction, the measured temperature and the choice between total or bulk conductivity.

In literature, the conductivity of Ce0.8RE0.2O1.9 is used as a first indication for the optimal
dopant. Conductivities for the total (Fig. 2.8) and bulk domain (Fig. 2.12) suggest a high conduc-
tivity for Sm and Gd doped ceria.
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Figure 8.18: Total ionic conductivity of polycrystalline Sm and Gd doped ceria according to exper-
iments at 600 °C. [27,28,36,62,64,73,156–158,160,185,190,452] Lines are a guide to the eye only.

The total conductivity in polycrystalline Sm and Gd doped ceria is shown in Fig. 8.18 for 600 °C.
Huang et al., [156,160] Peng et al. [158] and Fu et al. [157] investigated Sm doped ceria for several dopant
fractions leading to the lowest total conductivity, here. Significantly higher total conductivities were
found by Kudo and Obayashi, [162,190] Hohnke et al., [36] Tianshu et al. [64] and Zha et al. [73] for
several dopant fractions of Gd doped ceria. However, for Ce0.8RE0.2O1.9 and sample preparation
by the same group, the results of Eguchi et al. (1992) [27] and Balazs and Glass [62] suggest higher
conductivities for Sm doped ceria. Obviously, this discrepancy shows the strong influence of the
sample synthesis and preparation. For instance, Fuentes and Baker [185] showed even higher total
conductivities for Ce0.9Gd0.1O1.95 between 0.011 and 0.019 S/cm. The results are again surpassed
by the result of Zha et al. [73] and especially Eguchi et al. (1997) [28] for Sm doped ceria. Still, the
highest total conductivity is reported for Ce0.9Gd0.1O1.95 by Steele [452].
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8.2 The Influence of Doping

This behavior may be related to the influence of the grain boundary domain on the total conduc-
tivity as already shown before in Fig. 2.9, Chapter 4.1.5 and Fig. 8.4 (right). Therefore, bulk and
grain boundary conductivity should be separated e.g. by using impedance spectroscopy.
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Figure 8.19: Bulk ionic conductivity of Sm [74,166,169–172,179–181] and Gd doped ceria [64,86,166,169–177]

according to experiments at 500 °C. Fourth order polynomials were fitted to the data with
exception of the data of Zajac and Molenda to show the general trend of the data (dashed lines)
other Lines are a guide to the eye only.

The bulk conductivity for Sm and Gd doped ceria is shown in Fig. 8.19 for 500 °C. Similar to
the total conductivity, different research groups present different optimal dopants and dopant frac-
tions. As discussed in Chapter 8.1, these differences may be a result of different sample preparation
techniques. Therefore, only similar prepared Sm and Gd doped ceria should be compared.

Similar compositions for both dopants were presented by several groups: Van Herle et al. found
similar conductivities for both dopants, Omar et al. and Pérez-Coll et al. found higher conductivities
for Sm doped ceria, Zajac and Molenda found higher conductivities for Gd doped ceria. [166,169–172]

However, Zajac and Molenda presented rather high conductivities compared to all other studies,
which are therefore neglected in this study. As a result, the highest bulk conductivity in experiments
at 500 °C is expected for Sm doped ceria. This is in agreement with the KMC simulations, which
were presented above (Fig. 8.8).

In this study, these results were analyzed in more detail. Therefore, dopant fractions at the max-
ima of the bulk conductivity (and grain boundary conductivity) for Sm doped ceria were also inves-
tigated with Gd doped ceria in impedance experiments. Of course, the maxima for Gd doped ceria
may be at different dopant fractions though Fig. 8.18 and 8.19 suggest a similar curve progression.
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Therefore, the samples Ce0.93Sm0.07O1.965 and Ce0.9Sm0.1O1.95 as well as Ce0.93Gd0.07O1.965 and
Ce0.9Gd0.1O1.95 were investigated. Gd doped ceria and 7% Sm doped ceria samples were prepared
and measured by Gerald Dück.

Figure 8.20 shows the bulk ionic conductivity of Sm and Gd doped ceria. Sm doped ceria ex-
hibits a larger bulk conductivity than Gd doped ceria. The largest bulk conductivity is found for
Ce0.93Sm0.07O1.965. For Gd doped ceria, doping with x = 0.1 leads to the higher bulk conductivity,
which indicates a maximum at larger dopant fractions for Gd compared to Sm doped ceria as pre-
dicted by KMC simulations. Above 200 °C, the bulk conductivity of both investigated Sm doped
ceria compositions is similar.

The largest bulk conductivity is found for Ce0.93Sm0.07O1.965.
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Figure 8.20: Bulk ionic conductivity of Sm and Gd doped ceria according to impedance experi-
ments. [64,74,163,166,179,185]

The measured bulk conductivities are in good agreement with literature. [74] The ranking order in
literature is similar to the ranking order in this work. Exceptions are the conductivities by Sanghavi
et al., [179] which might share characteristics with the total domain due to its thin film properties.
Zhan et al. [74] found a kink in the bulk conductivity allegedly due to association around 500 °C.
In this work, already around 125 °C a change in the Arrhenius behavior is found. A comparison is
difficult since Zhan et al. measured only at higher temperatures and at 500 °C the bulk conductivity
can only be deducted from the grain boundary conductivity. As a result, the kink at 500 °C may be
influenced by the grain boundary conductivity.

The macroscopic grain boundary conductivity, which is shown in Fig. 8.21 (left), is generally
several orders of magnitude smaller than the bulk conductivity. Only the bulk conductivity of
Ce0.93Gd0.07O1.965 above 250 °C is similar to the grain boundary conductivity of 10% Sm or Gd
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8.2 The Influence of Doping

doped ceria. As the activation energies for the grain boundary domain are larger than for the bulk,
conductivities may be similar around 800 °C and 1000 °C. Especially for high dopant fractions, sim-
ilar conductivities occur already at low temperature according to literature. [187] The ranking order
for the grain boundary conductivity is different from the bulk domain. Here, all 10% doped samples
have larger conductivities than the 7% doped ceria indicating a maximum at larger dopant fractions
as seen in Chapter 2.4.3. For both dopant fractions, Sm doped ceria has the larger conductivity.

In literature, the macroscopic grain boundary conductivity scatters even more than the bulk
conductivity, though measurements of Tianshu et al. [64] are in good agreement with this work.
The reasons for this scattering are the different syntheses and preparation methods, which espe-
cially influence the grain boundary domain, as discussed before. As a result, the conductivities for
Ce0.9Sm0.1O1.95 according to Zhan et al. [74] are significantly lower, thus Ce0.9Gd0.1O1.95 according
to Tianshu et al. [64] and Fuentes et al. [185] has larger conductivities.

The total conductivity (Fig. 8.21 right) was calculated according to Chapter 4.1.5. As the grain
boundary conductivity is orders of magnitude smaller than the bulk conductivity in the investigated
temperature range, the total conductivity is very similar to the grain boundary conductivity. Devi-
ations between both increase with temperature, are at least four times larger for the x = 0.1 dopant
fractions and are larger for Sm doped ceria.
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Figure 8.21: Grain boundary (left) and total ionic conductivity (right) of Sm and Gd doped ceria
according to experiments. [64,74,156,161,185,317]

As a result, the activation energy for the total domain may change between the grain boundary
dominated low temperature region and the bulk dominated high temperature region. Of course, a
kink in the bulk conductivity due to association can also influence the total conductivity. In fact,
Fuentes et al. [185] fits two activation enthalpies below and above 500 °C. Jung et al. [317] found
significantly better regression coefficients using two straight lines for the Arrhenius plot though
they do not use this result for their final evaluation. Several other measurements could also be fitted
with two temperature regions as can be seen in Fig. 8.21.

The strong scattering in the grain boundary domain propagates in the total domain. The total
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conductivities for the 10% dopant fraction scatters several orders of magnitude explaining the
different results in literature for the best rare-earth dopant in ceria. In this work, Ce0.9Sm0.1O1.95

shows the highest total conductivity, which is in good agreement with Tianshu et al. [64] and Yahiro et
al. [161] However, Fuentes and Baker [185] show higher conductivities for Ce0.9Gd0.1O1.95. Figure 8.18
shows an increase in total conductivity for higher dopant fractions.

The largest total conductivity is found for Sm doped ceria.
In literature, different syntheses and sample preparation methods lead

to larger total conductivities for Gd doped ceria.
Ce0.93Gd0.07O1.965 exhibits exceptionally low conductivities in all domains and a larger activation

enthalpy in the grain boundary and total domain compared to this work and literature. In fact, this
was the only powder in this investigation that was milled in ethanol for a long time. Therefore,
abrasion from the zirconia balls could have led to a mild doping with Zr. However, Zr doping levels
were below the resolution limits of XRD and EDX measurements.

The experimental attempt frequency and activation enthalpy for different domains of Sm and Gd
doped ceria are summarized in Fig. 8.22.
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Figure 8.22: Experimental attempt frequency (left) and activation enthalpy (right) for different
domains of Sm and Gd doped ceria according to experiments. [64,74,156,158,161,163,166,168,179,185,317]

Lines are a guide to the eye only.

Activation enthalpies in the grain boundary domain are significantly higher than in the bulk
domain. While the activation enthalpy mostly increases for larger dopant fractions in the bulk
domain, it mostly decreases in the grain boundary and total domain. This was expected, as in
experiments the minimum in activation enthalpy correlates with the maximum in conductivity as
a function of dopant fraction (Chapter 2.4.4). Activation enthalpies in Sm and Gd doped ceria
are similar with the exception of the grain boundary and total domain for Ce0.93Gd0.07O1.965 as
discussed above. Activation enthalpies in grain boundary and total domain are similar as the total
conductivity is dominated by the grain boundary domain.

Experimental attempt frequencies in the grain boundary domain are similar to the bulk domain
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8.2 The Influence of Doping

except for Ce0.93Gd0.07O1.965. In this work, the experimental attempt frequency increases for larger
dopant fractions in the bulk, which propagates in the total domain, as the experimental attempt
frequency is independent of dopant fraction in the grain boundary domain. According to Tianshu et
al., [64] the experimental attempt frequency decreases for all domains. Surprisingly, all experimental
attempt frequencies for the grain boundary domain in this work are similar and low compared to
literature. Experimental attempt frequencies in the total domain tend to be lower than in the grain
boundary domain. This may be caused by an Arrhenius fit with a single activation enthalpy though
one or more kinks in the conductivity are observed. Here, kinks result from a decrease in activation
enthalpy for higher temperature due to either no longer existing association or change between grain
boundary to bulk dominated total domain.

Overall, both the experimental attempt frequency and activation enthalpy in this work are in
agreement with literature.

In conclusion, Sm doped ceria leads to the largest bulk and total conductivity, in this work.
While the largest bulk conductivity is found for Ce0.93Sm0.07O1.965, the dopant fraction leading to
the maximum in total conductivity is larger. For Gd doped ceria, xmax is larger as predicted by KMC
simulations. A comparison of experimental and simulated conductivities is shown in Chapter 8.2.6.
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8 Oxygen Ion Conductivity

8.2.4 Co-Doped Ceria: Sm-Zr and Gd-Zr
After successfully investigating Sm and Gd doped ceria, the next challenge is co-doped ceria, for
example Sm-Zr doped ceria (Ce1–x –yZrySmxO2–x/2). Here, migration energies depend not only on
the individual migration edges (Ce-Ce, Ce-Sm, Sm-Sm, Ce-Zr and Zr-Zr) and association energies
but also on mixed migration edge energies (Sm-Zr). Beyond that, the question remains whether the
simplified migration energy model still works for co-doped ceria. Doping ceria with zirconia is also of
particular interest since zirconium has the same valence as the host cation ceria. Therefore, doping
with zirconia does not create additional oxygen vacancies and the conductivity is only influenced
by the additional association or blocking of the oxygen vacancies. Previous studies in Y doped ceria
show that doping with Zr decreases the conductivity. [453]

In this work, both polycrystalline samples and agglomerates of single crystals are investigated to
compare their conductivities in bulk and total domain according to impedance experiments.

Single crystals with the compositions Ce0.889Zr0.006Gd0.105O1.9475−δ and
Ce0.887Zr0.043Sm0.070O1.965−δ were synthesized by skull-melting by Gregor Ulbrich. [454] Ceria
single crystals synthesized by skull-melting need Zr as an ignition material. During skull-melting,
an agglomerate of single crystals is grown. In this work, the single crystals could not be isolated.
Therefore, still, an agglomerate of single crystals with very large grain sizes (about 500 µm) is
investigated. The single crystals were compared with polycrystalline samples, which were prepared
and measured by Gerald Dück.

1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5- 2 0

- 1 5

- 1 0

- 5

0

5
 C e 0 . 9 3 S m 0 . 0 7 O 1 . 9 6 5  g r a i n  s i z e  ~ 1  µm
 C e 0 . 8 8 7 Z r 0 . 0 4 3 S m 0 . 0 7 0 O 1 . 9 6 5  g r a i n  s i z e  ~ 5 0 0  µm
 C e 0 . 8 8 Z r 0 . 0 5 S m 0 . 0 7 O 1 . 9 6 5  g r a i n  s i z e  ~ 1  µm
 C e 0 . 8 6 Z r 0 . 0 8 S m 0 . 0 6 O 1 . 9 7  g r a i n  s i z e  ~ 1  µm

ln(
σ bu

lkT
/(S

·K/
cm

))

1 0 0 0 / T  ( 1 / K )

7 2 7 3 9 4 2 2 7 1 2 7 6 0 1 3
T  ( ° C )

0 . 7 2  e V0 . 7 9  e V

0 . 9 0  e V

1 . 0 5  e V

Figure 8.23: Ionic conductivity for the bulk domain of Sm-Zr doped ceria according to impedance
experiments. Both, polycrystalline samples and agglomerates of single crystals are investigated.
Doping with Zr decreases the conductivity.

Impedance spectroscopy measurements reveal three semicircles, which can be attributed to the

202



8.2 The Influence of Doping

bulk domain, with a capacitance of about 5 · 10−11 F, the grain boundary domain, with a ca-
pacitance of about 5 · 10−9 F, and the electrode with an even larger capacitance according to
literature. [167,170,315]

Figure 8.23 shows the ionic conductivity for the bulk domain of Sm-Zr doped ceria. Doping
with Zr decreases the conductivity significantly. At the same time, the activation enthalpy increases
with Zr content. In fact, the Sm dopant fraction changes about 1%, simultaneously. However, the
influence of the conductivity of the variation in the Sm dopant fraction is estimated to be below
30%, while the measured conductivities decrease for more than 95%. Therefore, the influence of
Zr dominates the conductivity. Polycrystalline samples and single crystals show supposedly similar
bulk conductivities.
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Figure 8.24: Macroscopic grain boundary (left) and total (right) conductivity of Sm-Zr doped ceria
according to impedance experiments. Both, polycrystalline samples and agglomerates of single
crystals are investigated.

For the polycrystalline samples, the macroscopic grain boundary conductivity is significantly
lower in accordance with literature. The grain boundary conductivity (Fig. 8.24) also decreases
with Zr dopant fraction while the activation enthalpy increases. An exception is the single crystal
agglomerate, which has an exceptionally high macroscopic grain boundary conductivity, which is
more than factor 15 larger than approximated due to comparison with the other samples. According
to the serial brick layer model (see Chapter 4.1.5), the macroscopic grain boundary conductivity
is proportional to the grain size. Therefore, for similar microscopic grain boundary conductivities,
similar grain thicknesses and larger grain sizes an increase in macroscopic grain boundary conduc-
tivity is expected. As the increase in macroscopic grain boundary conductivity is not proportional
to the increase in grain size, either the microscopic grain boundary conductivity or grain thickness
is not constant or the serial brick layer model is not valid for the single crystal agglomerate.

The macroscopic grain boundary conductivity increases with
increasing grain size.
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The total conductivity is again very similar to the grain boundary conductivity and deviates only
at high temperatures. Due to the influence of the bulk domain, the activation enthalpies are slightly
lower as well.
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Figure 8.25: Ionic conductivity for the bulk, grain boundary and total domain of Gd-Zr doped ceria
according to impedance experiments. Both, polycrystalline samples and agglomerates of single
crystals are investigated.

Ionic conductivities for the bulk, grain boundary and total domain of Gd-Zr doped ceria are shown
in Fig. 8.25. Compared to Sm-Zr co-doped ceria, co-doping with Zr decreases the conductivity of
Gd doped ceria more pronounced.

In conclusion, the ionic conductivity decreases with increasing Zr fraction according to impedance
experiments in this work and literature. [453] Therefore, Zr impurities, which are for example caused
by grinding the powder, have to be minimized for applications demanding a high ionic conductivity.

Doping ceria with Zr decreases the conductivity significantly.
The decrease is more pronounced in Gd than in Sm co-doped ceria.
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8.2.5 Lu Doped Ceria
In literature, Lu doped ceria is rarely investigated due to its low ionic conductivity. Only a few
dopant fractions have been measured investigating the bulk [165,166] and total conductivity. [62]

However, Lu doped ceria is of particular interest as the dopant Lu3+ has a similar ionic radius as
the host cation Ce4+. [32] This results in a similar migration barrier (Ce-Lu edge) as already shown
in Fig. 7.6. The Lu-Lu edge has a larger migration barrier but only appears rarely. Therefore, the
migration energy is mainly determined by the association between dopants and oxygen vacancies
(Fig. 5.1) and the repulsion between oxygen vacancies (Fig. 5.5).

Lu doped ceria is investigated using impedance spectroscopy experiments. Lu doped ceria was
synthesized, prepared and measured by Gerald Dück. [295]
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Figure 8.26: Arrhenius behavior of the bulk conductivity in Ce1–xLuxO2–x/2 according to experi-
ments by Dück [295] in comparison with literature. [165,166]

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2

7 2 7 5 6 0 4 4 1 3 5 2 2 8 2 2 2 7 1 8 1

- 1 4 . 0
- 1 2 . 0
- 1 0 . 0

- 8 . 0
- 6 . 0
- 4 . 0
- 2 . 0
0 . 0
2 . 0  x  =  0 . 0 5  

 x  =  0 . 1  
 x  =  0 . 1 5  
 x  =  0 . 2  
 x  =  0 . 2 5

ln 
(σ gra

in 
bo

un
da

ryT
/(S

·K/
cm

))

1 0 0 0 / T  ( 1 / K )
1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2

7 2 7 5 6 0 4 4 1 3 5 2 2 8 2 2 2 7 1 8 1

- 1 4 . 0
- 1 2 . 0
- 1 0 . 0

- 8 . 0
- 6 . 0
- 4 . 0
- 2 . 0
0 . 0
2 . 0

x  =  0 . 2
 B a l a z s  a n d  G l a s s

T  ( ° C )

 x  =  0 . 0 5  
 x  =  0 . 1  
 x  =  0 . 1 5  
 x  =  0 . 2  
 x  =  0 . 2 5

ln 
(σ tot

alT
/(S

·K/
cm

))

1 0 0 0 / T  ( 1 / K )

Figure 8.27: Arrhenius behavior of the macroscopic grain boundary (left) and total conductivity
(right) in Ce1–xLuxO2–x/2 according to experiments by Dück [295] in comparison with litera-
ture. [62]

In experiments, bulk and grain boundary conductivity follow the Arrhenius behavior (Fig. 8.26
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and 8.27). Figure 8.28 and 8.29 show the conductivity as a function of the dopant fraction. The
pre-exponential factor and activation enthalpy are shown in Fig. 8.30.
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Figure 8.28: Ionic conductivity of bulk domain in Lu doped ceria according to experiments by
Dück. [295] Lines are a guide to the eye only.

The bulk conductivity increases with increasing dopant fraction to a maximum at about x = 0.075
below 250 °C or x = 0.1 above 250 °C. For higher dopant fractions, the bulk conductivity decreases.
The behavior of the conductivity is similar to Sm doped ceria though the conductivity is 1–2 orders
of magnitude smaller. The activation enthalpy for the bulk domain increases with increasing dopant
fraction and is significantly higher than in Sm doped ceria, which was expected due to the low
conductivity. The experimental attempt frequency shows a similar behavior and has the same order
of magnitude compared to Sm doped ceria. As seen in KMC simulations, the activation enthalpy
is more important for a high conductivity than the experimental attempt frequency. The bulk
conductivity and activation enthalpy for 10% Lu doped ceria is in agreement with measurements
by Omar et al. [165,166]

The grain boundary conductivity (Fig. 8.27 and 8.29) exhibits a maximum in conductivity as a
function of dopant fraction for x = 0.1 for all measured temperatures similar to Sm doped ceria.
At higher dopant fractions, the conductivity increases again above x = 0.15 leading to the highest
conductivities at x = 0.25 above 330 °C for all dopant fractions. In Sm doped ceria, the minimum
in conductivity was already found at x = 0.125 while above x = 0.15 the conductivity decreases
again. However, for the interpretation of the impedance measurements for Sm doped ceria may be
imprecise as the separation of the grain boundary and the electrode semicircle is challenging for
dopant fractions above 10%. The grain boundary conductivity is 1–2 orders of magnitude smaller
than in Sm doped ceria. The grain boundary conductivity is more than one order of magnitude
smaller with exception of Ce0.75Lu0.25O1.875, where bulk and grain boundary conductivity are sim-
ilar. The activation enthalpy for the grain boundary domain decreases up to a dopant fraction of
x = 0.1 significantly and increases slightly for higher dopant fractions. This correlates with the
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maximum in conductivity. The activation enthalpy is higher than in Sm doped ceria. Surprisingly,
the experimental attempt frequency de-, in- and again decreases with increasing dopant fraction
and therefore deviates from the behavior of the activation enthalpy.
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Figure 8.29: Macroscopic ionic conductivity of grain boundary domain according to experiments by
Dück (left) [295] and total conductivity (right) in Lu doped ceria. Lines are a guide to the eye
only.

The total conductivity is nearly identical to the grain boundary conductivity except for lower
conductivities for Ce0.75Lu0.25O1.875. The total conductivity and activation enthalpy for 20% Lu
doped ceria is in agreement with measurements by Balazs and Glass. [62]
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Figure 8.30: Experimental attempt frequency (left) and activation enthalpy (right) of Lu doped ceria
according to impedance experiments. Lines are a guide to the eye only.

In conclusion, the dependence of the conductivity on the dopant fraction is similar in Lu and
Sm doped ceria. The low conductivity for Lu doped ceria results from a high activation enthalpy. A
comparison of experimental and simulated conductivities is shown in the next section.
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8.2.6 Comparing Simulations and Experiments
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Figure 8.31: Simulated ionic conductivity of rare-earth doped ceria at 267 °C and 368 °C with RE
= Lu, Gd and Sm. In comparison, ionic conductivities according to impedance experiments are
shown. Lines are a guide to the eye only.

Figure 8.31 shows the simulated and experimental ionic conductivity of Lu, Gd and Sm doped
ceria according to this work. For Sm doped ceria, a similar curve progression in simulations and
experiments is found. An exception are small dopant fractions in experiments, where impurities
influence the conductivity and additional oxygen vacancies are formed due to non-stoichiometry.
For Gd doped ceria, similar observations can be made.

For Lu doped ceria, the dependence of the conductivity on the dopant fraction is similar to
Sm doped ceria. The KMC simulations for Lu doped ceria show a maximum in conductivity as
a function of dopant fraction at far higher dopant fractions. It has already been shown that the
dopant fraction leading to the maximum in conductivity is limited by blocking. KMC simulations
for Yb doped ceria show a significantly higher xmax though the Lu-Lu and Yb-Yb edge energies
are similar. The Ce-Yb edge energy is significantly higher than the Ce-Lu edge energy. The reason
for the discrepancy between experiments and simulations for Lu doped ceria is therefore the Ce-Lu
migration edge energy, which is smaller than the Ce-Ce edge energy. Minor errors in the energy
difference result in significant changes in the simulated conductivities.

Experiments suggest that the Ce-Lu edge energy
is higher than the Ce-Ce edge energy.
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8.3 The Influence of Time:

Long-term Degradation Due to Cation Ordering
In literature In experiments, Zhan et al. investigated the conductivity of Gd and Y doped
ceria. [168] Subsequently, they tempered the samples at 1000 °C for 8 days, investigated the conduc-
tivity again and found decreased bulk conductivities for high dopant fractions: At 400 °C, the bulk
conductivity decreases by 30% (Ce0.75Gd0.25O1.875) and by 50% (Ce0.7Gd0.3O1.85) for Gd doped
ceria and by about 4% (Ce0.75Y0.25O1.875) and by 11% (Ce0.7Y0.3O1.85) for Y doped ceria. The
aged samples showed a significant degradation in conductivity.

Simulations In an earlier publication, [55] the conductivity for Y doped ceria was simulated
theoretically using combination of DFT, MMC and KMC simulations with the model 2014 (see
Chapter 5.1.1) with three different types of lattices (Chapter 4.2.2):

In a RND lattice, the cation sublattice is randomly ordered (or equilibrated at infinite temperature
T1 = inf), while the anion sublattice is in thermodynamic equilibrium at the investigated temper-
ature T2. In an EQ lattice, both sublattices are equilibrated at 2/3 of the melting point of ceria
(T1 = 1500 K), similar to the sintering process in experiments and the Tammann rule. [455] At lower
temperatures, the cations are frozen due to their low mobility and the anions are equilibrated at T2.
In a DEG lattice, both sublattices are equilibrated at the final investigated temperature T1 = T2,
simulating a degraded lattice, which had a very long time to reach thermodynamic equilibrium.

The ionic conductivity of a randomly ordered cation sublattice (RND) is comparable to the ionic
conductivity of an equilibrated cation sublattice (EQ). This supports the general use of randomly
ordered cation sublattices in this work for KMC simulations.

For an aged sample, the degraded lattice (EQ) shows a significant decrease in ionic conductivity,
which is considerably larger than in the experiments of Zhan et al. [168] The deviation was expected
as a degraded lattice is in thermodynamic equilibrium at the impedance temperature, which is only
reached after a very long time.

However, the degree of degradation was surprising. In literature, degradations caused only by a
change in the ordering of the cations are rarely reported. While degradations of SOFC are intensively
studied, aging phenomena are assigned to mechanical problems like ablation or chemical problems
like poisoning of electrodes or demixing of materials. A degradation of the electrolyte and decrease
in ionic conductivity by 80% caused by cation ordering would be a major issue for long-term
performance and should be investigated thoroughly.

The degradation is caused by a clustering of dopants and oxygen vacancies. At high temperatures,
the cation ordering is dominated by the number of possible configurations (configurational entropy).
This is the case for the RND and EQ lattice. For low temperature (e.g. the EQ lattice), the defect
distribution is controlled by the formation of energetically most favored configurations. A typical
energetically favored configuration consists of an oxygen vacancy with two yttrium ions in the 1NN
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position. Investigations show that this cluster appears more often in an EQ lattice up to intermediate
dopant fractions for 1000 K and for all dopant fractions for 700 K. [55] Furthermore, the number of
Y-Y pairs in 2NN, 3NN and 4NN increases for all dopant fractions, which is evidence for the formation
of larger clusters that can effectively trap and block the oxygen vacancies and lead to a lowered
conductivity.

Experiments To verify this behavior, impedance spectroscopy experiments were performed. In
this work, Sm doped ceria was chosen due to its high bulk conductivity. In Fig. 8.32, the bulk ionic
conductivity of Ce0.8Sm0.2O1.9 at 500 K as a function of equilibration time at 800 K is shown. In
fact, the ionic conductivity for the bulk decreases with increasing equilibration time at 800 K until
after 55 days a constant value is reached.
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Figure 8.32: Degradation of the ionic conductivity of the bulk domain of Ce0.8Sm0.2O1.9 at 500 K
as a function of equilibration time at 800 K according to impedance experiments.

Further measurements for the early decay in ionic conductivity with equilibration times up to
20 days are shown in Fig. 8.33. In the left figure, the influence of different methods of data analysis
is shown. According to Chapter 4.1.5, the bulk semicircle found in the Nyquist plot for impedance
measurements overlaps with the grain boundary semicircle. Therefore, the full semicircle or only the
high frequency part of the bulk semicircle can be used. While the full semicircle may be influenced
by the grain boundary conductivity, the high frequency part may be dominated by a change in
conductivity behavior according to literature. [456] Additionally, either resistivity R, Q-, and n-value
can be fitted for each measurement or Q-, and n-value are kept constant while only the resistivity
is fitted for each measurement. In Fig. 8.33 (right), the fit of the full semicircle with variable R, Q-,
and n-value for each measurement is shown, which was used for all impedance data in this work.

After 5.5 equilibration days, the sample was reinstalled, which lead to a large jump in conductivity.
The jump suggests a strong dependence of the bulk ionic conductivity on the contact between
sample and Pt-wires. If this contact also degenerates with equilibration time, the result may be
solely dependent on the contacting.
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Figure 8.33: Ionic conductivity of bulk domain in Ce0.8Sm0.2O1.9 at 500 K as a function of equili-
bration time at 800 K according to impedance experiments.

The ionic conductivity decreases with increasing equilibration time at 800 K with about 0.1 ·
10−6 S/cm to 0.4 · 10−6 S/cm per 10 days, which is about 1% to 4%. This is significantly less than
found by Zhan et al. for Gd doped ceria, [168] which might be a result of the equilibration, which
was not performed on a fresh sample in this work. The decrease is much larger than acceptable
degradation rates for applications (about 1% per 1000 h). The measured decrease in conductivity
could be caused by cation ordering, however, as discussed other reasons for the degradation are
possible.
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In this work, the ionic conductivity in the bulk of doped ceria was investigated with experiments and
theoretical calculations. For a detailed understanding of the underlying mechanism that determines
the magnitude of the oxygen ion conductivity and the optimal dopant concentration, influences of
microscopic defect interactions and the local structure on the macroscopic conductivity were shown.

The determination of the coordination number in ceria using Extended X-Ray Absorption Fine
Structure (EXAFS) spectroscopy experiments was improved. The local structure was calculated for
diluted defects or high defect concentrations using a pair interaction model and the association
energies. Here, the Density Functional Theory (DFT) calculations and Metropolis Monte Carlo
(MMC) simulations confirm the experimental results.

The ionic conductivity was predicted using Kinetic Monte Carlo (KMC) simulations, for which
microscopic attempt frequencies and migration energies for different ionic configurations were cal-
culated by means of DFT.

The attempt frequency in pure ceria was calculated as 1.47 · 1012 s−1 at constant volume and
7.67·1012 s−1 at constant pressure. For doping at the migration edge, large dopants lead to an increase
and small dopants to a decrease in attempt frequency. One samarium dopant does not influence the
attempt frequency due to a curved migration path. Doping with Sm in nearest neighborhood to the
initial position of the migrating oxygen vacancy increases the attempt frequency.

The experimental attempt frequency for pure ceria varies vastly between 1013 s−1 and 1022 s−1.
The vast scattering of the experimental attempt frequency is caused by a change in activation
enthalpy. The direct correlation of both properties was shown. Especially different contributions of
the bulk and grain boundary domain to the total conductivity, different impurities, a change from
an impurity- to a reduction-dominated regime and a change in the diffusion behavior can lead to
significant changes in the activation enthalpy. Consequently, the experimental attempt frequency can
be described as a function of the activation enthalpy for all measurements. In a simple model, the
strong influence of the distribution of the different migration energies on the experimental attempt
frequency was shown. Beyond that, the microscopic increase in local attempt frequency leads to a
macroscopic increase in experimental attempt frequency in an Arrhenius plot.

The migration energy was calculated for ionic configurations in pure and doped ceria. A correlation
between the migration energy and the widening of the edge cations distance was shown. Due to a
strong dependence on the supercell size, the migration energy was extrapolated for an infinitely
large supercell.
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Numerous ionic configurations exist in doped ceria. While it is possible to reduce the number of
arrangements if configurations are symmetrically equivalent and can be converted into each other,
nevertheless every configuration cannot be calculated. In this work, the migration energy was pre-
dicted by creating a model including all possible configurations for the migration energy. Lattice
positions were grouped if they had the same distance to the start, center or destination position.
The migration energy increases categorically with increasing number of dopants at the migration
edge (zero, one and two). The migration energy either increases or decreases linearly with increasing
of number dopants at start or destination position. If the number of dopants at both the start and
destination position increases, the migration energy generally decreases. Using over 1100 migration
energies proved that a pair interaction model is appropriate to describe the migration energy in
doped ceria. The interaction between both sublattices (cation and anion) is small, and migration
energies for diluted defects as well as high defect concentrations can be predicted using the proposed
model.

The ionic conductivity is influenced by trapping, blocking and vacancy-vacancy interactions.
Blocking mainly limits the dopant fraction of the maximum of the ionic conductivity. Here, the edge
with one dopant is decisive. This shows that blocking is strongly underrated in literature. Trapping
mainly limits the maximum ionic conductivity. Here, the association energy differences are decisive.
Not only a low associate formation (hold) but also a low vacancy pull (catch) is important for
a large ionic conductivity. Similar to the maximum ionic conductivity, the activation enthalpy is
predominately influenced by trapping.

For comparison, impedance measurements were performed for Sm, Gd and Lu doped ceria. The
measurements agree well with the data predicted by theoretical methods, namely the DFT cal-
culations and KMC simulations. The largest bulk conductivity is found for Ce0.93Sm0.07O1.965. In
literature, different syntheses and sample preparation methods lead to larger total conductivities
for Gd doped ceria. Experiments suggest that the Ce-Lu edge energy is higher than the Ce-Ce edge
energy. Additionally, co-doped Sm-Zr and Gd-Zr ceria were investigated because the analyzed ceria
single crystals synthesized by skull-melting need Zr as an ignition material. Doping ceria with Zr
decreases the conductivity significantly. The decrease is more pronounced in Gd than in Sm doped
ceria.

Due to scattering of the ionic conductivity in literature for materials with the same composition,
influences of the sample preparation were investigated. Different sintering times and temperatures
not only lead to different grain sizes but also to different bulk conductivities.

Finally, MMC and KMC simulations were combined to simulate the degradation of the oxygen ion
conductivity due to a change in cation distribution. Impedance spectroscopy experiments verified a
decrease in bulk conductivity with operation time.

For the development of future materials, the presented computational methods can be used to
model the migration energy and simulate the ionic conductivity of any crystalline material. Blocking
effects and V-V interactions must be included as their importance has been discussed in this work
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and has often been underestimated in literature. In this way, properties can be identified, which lead
to high conductivities according to the proposed catch-and-hold principle or low conductivities as
in the case of Zr co-doped ceria. In addition, degradation effects should be included in the search
for new materials, as long-term performance is crucial for the new generation of ionic conductors.
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Figure 9.1: Calculating the dopant fraction in RE1O1.5mol% and RE2O3mol%.
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Figure 9.2: Radial Distribution Function at Ce(K)-edge of Ce0.8RE0.2O1.9.
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x ampi Ri (Å)
1st shell 2nd shell 1st shell 2nd shell

0 0.89(4) 0.93(5) 2.338(4) 3.859(3)
0.025 0.64(5) 0.85(6) 2.356(6) 3.870(4)
0.05 0.62(4) 0.66(5) 2.336(5) 3.862(4)
0.075 0.70(5) 0.84(6) 2.348(5) 3.865(3)
0.1 0.72(4) 0.68(5) 2.335(4) 3.859(3)
0.125 0.65(4) 0.68(5) 2.341(5) 3.863(4)
0.15 0.61(4) 0.60(5) 2.329(5) 3.860(4)
0.2 0.63(4) 0.50(5) 2.323(5) 3.853(5)
0.225 0.60(4) 0.45(5) 2.319(5) 3.853(6)
0.25 0.61(4) 0.40(5) 2.312(5) 3.848(6)

Table 9.1: Fit results of the EXAFS data of Ce1–xSmxO2–x/2 at the Ce-edge. The amplitude ampi
and the distance to the scattering ion Ri is shown.
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Figure 9.6: Migration energy of Ce-RE edge at different supercell sizes.
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Figure 9.7: Migration energy of RE-RE edge at different supercell sizes.
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Sm doped ceria in 3× 3× 3 supercell.
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Figure 9.9: Model and DFT migration energies with fitted parameters. The jumping oxygen vacancy

interacts with either dopants and vacancies. Both sublattices do not interact. The model c1+vn
[vn] up to the 13th shell (5.41 Å) is used. Sm doped ceria in 3× 3× 3 supercell.
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Figure 9.10: Model and DFT migration energies with fitted parameters. The jumping oxygen vacancy

interacts with both dopants and vacancies. Both sublattices interact. The model c1+vn [vn] up
to the 13th shell (5.41 Å) is used. Sm doped ceria in 3× 3× 3 supercell.
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Figure 9.11: Ionic conductivity of rare-earth doped ceria at 500 °C with RE = Lu, Yb, Y, Gd, Sm,
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Figure 9.12: Bulk ionic conductivity at 500 °C in KMC simulation in this work (lines) and exper-
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polynomials were fitted to the data with exception of the data of Zajac and Molenda to show
the general trend of the data (dashed lines).
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Figure 9.13: Calculated ionic conductivity of rare-earth doped ceria at 500 °C without considering
RE-V interactions around the start and destination position (left) or without considering different
migration edges (right). Lines are a guide to the eye only.
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Figure 9.17: Apparent attempt frequency (left) and activation enthalpy (right) for the conductivity
of simulated rare-earth doped ceria for the temperatures 267 °C and 500 °C and between 500 °C
and 600 °C. Lines are a guide to the eye only.

249



Appendix

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

ac
tiva

tio
n e

nth
alp

y (
eV

)

x  i n  C e x R E 1 - x O 2 - x / 2

 L u
 Y b
 Y
 G d
 S m
 N d
 L a

(a) all interactions

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

ac
tiva

tio
n e

nth
alp

y (
eV

)

x  i n  C e x R E 1 - x O 2 - x / 2

 L u
 Y b
 Y
 G d
 S m
 N d
 L a

(b) no trapping

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

ac
tiva

tio
n e

nth
alp

y (
eV

)

x  i n  C e x R E 1 - x O 2 - x / 2

 L u
 Y b
 Y
 G d
 S m
 N d
 L a

(c) no blocking

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

ac
tiva

tio
n e

nth
alp

y (
eV

)

x  i n  C e x R E 1 - x O 2 - x / 2

 L u
 Y b
 Y
 G d
 S m
 N d
 L a

(d) only different Ce-RE edge

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

ac
tiva

tio
n e

nth
alp

y (
eV

)

x  i n  C e x R E 1 - x O 2 - x / 2

 L u
 Y b
 Y
 G d
 S m
 N d
 L a

(e) only different 1NN↔2NN RE-V jump

Figure 9.15: Calculated activation enthalpy between 500 °C and 600 °C. All interactions are used
(middle) or either RE-V interactions around the start and destination position (left) or different
migration edges (right) are neglected. Lines are a guide to the eye only.
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Figure 9.16: Apparent attempt frequency between 500 °C and 600 °C. All interactions are used
(middle) or either RE-V interactions around the start and destination position (left) or different
migration edges (right) are neglected. Lines are a guide to the eye only.
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Figure 9.18: Apparent experimental attempt frequency from impedance spectroscopy experiments
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Nd [163] and La doped ceria. [163] Lines are a guide to the eye only.

Figure 9.19: Examples for two favored migration paths in yttrium doped ceria according to earlier
work. [55] The favored migration path of the oxygen is depicted as red line. On the left side there
are similar adjacent migration edges while on the right side there are alternating migration edges.
Cerium ions (green), yttrium ions (blue) and oxygen ions (red).
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