Ab initio and experimental oxygen ion conductivities in Sm-Zr and Gd-Zr co-doped ceria

Julius Koettgen,^{1,2,3,4*} Steffen Grieshammer,^{1,2,5} Gerald Dück,¹ Gregor Ulbrich,⁶ Martin Lerch,⁶ and Manfred Martin^{1,2,5,7}

¹Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
²JARA-HPC, Forschungszentrum Jülich and RWTH Aachen University, Germany
³Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
⁴Department of Materials Science and Engineering,
University of California, Berkeley, California 94720, United States
⁵Helmholtz-Institut Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
⁶Institute of Chemistry, Technical University of Berlin,
Straße des 17. Juni 124, 10623 Berlin, Germany
⁷JARA-Energy, Forschungszentrum Jülich and RWTH Aachen University, Germany

Figure S1: X-ray diffractogram and Rietveld refinement of $Ce_{0.887}Zr_{0.043}Sm_{0.070}O_{1.965}$ (left) and $Ce_{0.889}Zr_{0.006}Gd_{0.105}O_{1.9475}$ (right).ⁱ

Figure S2: Scanning electron microscope measurement of Ce_{0.88}Zr_{0.05}Sm_{0.07}O_{1.965}.

Exemplary impedance plots for Ce_{0.88}Zr_{0.05}Sm_{0.07}O_{1.965} at 379 °C for the polycrystal and the agglomerate of single crystals. The specific impedance $Z\frac{A}{l}$ with sample area A, and thickness l is shown for comparability. Note the different scales of the axes in Figure S1 and Figure S2. In the case of the single agglomerate, the semicircle for the grain boundary is strongly downscaled due to the small number of grain boundaries.

Figure S3: Impedance of $Ce_{0.88}Zr_{0.05}Sm_{0.07}O_{1.965}$ polycrystalline sample (grain size ~1 μ m) at 379 °C. Geometry factors A and I are included in the values. Numbers in the graph state log₁₀ of the respective frequency.

Figure S4: Impedance of $Ce_{0.88}Zr_{0.05}Sm_{0.07}O_{1.965}$ single crystal agglomerate sample (grain size ~500 μ m) at 379 °C. Geometry factors A and I are included in the values. Numbers in the graph state log₁₀ of the respective frequency.

Table S1: Migratic	on energies for a	the specific edge	configurations f	from density	functional theo	ry calculations	in $Ce_{1-y}Zr_yO_2$.
--------------------	-------------------	-------------------	------------------	--------------	-----------------	-----------------	------------------------

edge	edge energy			
	<i>y</i> = 0	<i>y</i> = 0.1		
Ce-Ce	0.466	0.493		
Ce-Gd	0.577	0.638		
Ce-Sm	0.631	0.699		
Ce-Zr	0.251	0.301		
Gd-Gd	0.901	0.951		
Gd-Zr	0.392	0.430		
Sm-Sm	1.031	1.091		
Sm-Zr	0.427	0.474		
Zr-Zr	0.139	0.163		

Table S2: Pair interaction energies from density functional theory calculations in $Ce_{1-y}Zr_yO_{2}$. Interactions are labeled sequentially according to Figure 5 in the manuscript.

interaction	raction interaction energy			
	<i>y</i> = 0	<i>y</i> = 0.1		
GdV1	-0.210	-0.227		
GdV2	-0.060	-0.060		
ZrV1	-0.600	-0.581		
ZrV2	-0.050	0.014		
SmV1	-0.150	-0.148		
SmV2	-0.080	-0.060		
VV1	0.848	0.895		
VV2	0.291	0.305		
VV3a	0.306	0.305		
VV3b	0.358	0.421		
VV4	0.268	0.272		

ⁱ G. Ulbrich, Ph.D. Thesis, Technische Universität Berlin, Berlin, 2015.