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Understanding the ionic conductivity maximum in
doped ceria: trapping and blocking†

Julius Koettgen, *a Steffen Grieshammer, ab Philipp Hein, a

Benjamin O. H. Grope,a Masanobu Nakayama cd and Manfred Martin *abef

Materials with high oxygen ion conductivity and low electronic conductivity are required for electrolytes

in solid oxide fuel cells (SOFC) and high-temperature electrolysis (SOEC). A potential candidate for the

electrolytes, which separate oxidation and reduction processes, is rare-earth doped ceria. The prediction

of the ionic conductivity of the electrolytes and a better understanding of the underlying atomistic

mechanisms provide an important contribution to the future of sustainable and efficient energy

conversion and storage. The central aim of this paper is the detailed investigation of the relationship

between defect interactions at the microscopic level and the macroscopic oxygen ion conductivity in

the bulk of doped ceria. By combining ab initio density functional theory (DFT) with Kinetic Monte Carlo

(KMC) simulations, the oxygen ion conductivity is predicted as a function of the doping concentration.

Migration barriers are analyzed for energy contributions, which are caused by the interactions of

dopants and vacancies with the migrating oxygen vacancy. We clearly distinguish between energy

contributions that are either uniform for forward and backward jumps or favor one migration direction

over the reverse direction. If the presence of a dopant changes the migration energy identically for

forward and backward jumps, the resulting energy contribution is referred to as blocking. If the change

in migration energy due to doping is different for forward and backward jumps of a specific ionic

configuration, the resulting energy contributions are referred to as trapping. The influence of both

effects on the ionic conductivity is analyzed: blocking determines the dopant fraction where the ionic

conductivity exhibits the maximum. Trapping limits the maximum ionic conductivity value. In this way, a

deeper understanding of the underlying mechanisms determining the influence of dopants on the ionic

conductivity is obtained and the ionic conductivity is predicted more accurately. The detailed results and

insights obtained here for doped ceria can be generalized and applied to other ion conductors that are

important for SOFCs and SOECs as well as solid state batteries.

1 Introduction

Increasing utilization of renewable energy sources like wind and
solar power highlights the importance of energy conversion and
storage. Solid oxide fuel cells (SOFC) have high energy conversion

efficiency and excellent fuel flexibility and are therefore a promising
candidate for future energy applications. For good performance,
an electrolyte with high oxygen ion conductivity is required.

Promising materials for solid electrolytes are rare-earth (RE)
doped ceria Ce1�xRExO2�x/2,1 which is investigated in this work,
and other fluorite-type oxides like doped zirconia (ZrO2)1�x(RE2O3)x

with dopants like RE = Sc, Yb, Er, Y, Dy, Gd, Eu and Nd or CaO,2,3

or doped hafnia (HfO2)1�x(RE2O3)x with dopants like Yb, Y and
Sm.4 High oxygen ion conductivities were also reported for the
perovskite-structured magnesium doped lanthanum or neodymium
gallates (La1�xSrxGa1�yMgyO3�d and NdGa1�yMgyO3�d).

5–7

Additional examples are the perovskite-structured rare-earth
aluminates La1�xSrxAl1�yMgyO3�d for either Sr or Mg doping,8

the perovskite-structured calcium titanate CaTi1�xFexO3�d for
Fe doping9 and the apatite-type La10�xBax(SiO4)6O3�x/2.10

For all these systems, doping with lower valent oxides creates
oxygen vacancies (cf. eqn (1)), which results for the vacancy jump
mechanism in a significant increase in oxygen ion conductivity.
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However, the ionic conductivity first increases and then
decreases with increasing dopant fraction leading to an ionic
conductivity maximum. The central aim of this paper is the
detailed understanding of the underlying mechanism of the
ionic conductivity maximum. In fact, an ionic conductivity
maximum as a function of the doping fraction can also be found
without the creation of oxygen vacancies for ionic conductors, e.g. for
(Bi2O3)1�x(Y2O3)x,11–13 for mixed ionic–electronic conductors (MIEC),
e.g. for Y-doped BSCF (Ba0.5Sr0.5Co0.8Fe0.2�xYxO3�d),

14 and for other
types of ionic conductivity, e.g. for the proton conductivity in
barium zirconate15–18 and Li-conducting NASICON materials.19–23

Due to an abundance of data, we have chosen rare-earth doped
ceria as a model system in this work.

Pure cerium oxide itself is not a good ionic conductor.24

However, doping for example with samarium oxide (Sm2O3) leads
to high conductivities as revealed by impedance spectroscopy
experiments. An ionic conductivity maximum as a function of

dopant fraction at Ce0.8Sm0.2O1.9 was reported by Eguchi et al.25

For different dopants (Ce0.8RE0.2O1.9), a correlation between ionic
conductivity and dopant radius26 was found.25,27–29 Compared
to nominally pure ceria, doping can also decrease the ionic
conductivity e.g. by doping with Sc.30

The influence of the type of dopant and the dopant fraction
on conductivity has been a topic of research for half a century.
Initially, analytical models were employed.31–34 For more than
30 years semi-empirical35–38 and since the turn of the 21st
century ab initio calculations have been performed.39–43 Despite
the development of various models, the detailed understanding
of the underlying mechanism that determines the magnitude
of the oxygen ion conductivity and the optimal dopant concen-
tration is still missing.

In this work, this mechanism is closely investigated by
presenting the relation between defect interactions and oxygen
ion conductivity. Defect interactions are calculated using
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density functional theory (DFT) and oxygen ion conductivities
are calculated using Kinetic Monte Carlo (KMC) simulations
following our earlier publications.34,44–47 Only if both defect
interactions and oxygen ion conductivities as well as their
interdependency are known, the behavior in the bulk of doped
ceria can be understood.

The paper is organized as follows: in Section 2, we review the
investigated material doped ceria, its ionic conductivity accord-
ing to the literature as well as the dopant fraction that leads
to the highest conductivity. Subsequently, the corresponding
activation enthalpies and interaction energies are discussed.
Afterwards, we give a literature overview on interpretations of
the conductivity data. In Section 3, we present our results for
the defect interactions. Both the association energy between
defects on regular lattice sites (trapping) and migration energies
for the activation barriers of symmetric jump environments
(blocking) are discussed. Afterwards, a model for the migration
energy for all possible jump environments is presented. We
classify migration energy models used in the literature and
compare the quality of different models. In Section 4, we present
our simulation results for the ionic conductivity including new
experimental results with Sm doped ceria. By varying the amount
of trapping or blocking for several dopants, the underlying
mechanism that determines the magnitude of the oxygen ion
conductivity and the optimal dopant concentration are investi-
gated. Finally, we compare the calculations with experiments. In
Section 5, we give a short conclusion. The theoretical, computa-
tional and experimental details are described in the appendix.

2 General background
2.1 Doped ceria

Doping of cerium oxide (CeO2) with lower valent oxides, e.g.
rare-earth oxides RE2O3, leads to the creation of oxygen
vacancies1 as shown in eqn (1) in the Kröger–Vink notation.

As dopant fractions in experiments are high (cf. Fig. 1), ceria is
actually rather substituted than doped with rare-earth oxides.

RE2O3 ! 2RE
0
Ce þ 3O�O þ V��O (1)

As a result, rare-earth dopants (RE
0
Ce or RE) and oxygen vacancies

(V��O or V) are the majority defects with a concentration controlled

by the dopant fraction according to RE
0
Ce

h i
¼ 2 V��O
� �

for

Ce1�xRExO2�x/2. Other defects can be neglected and the concen-
tration of oxygen vacancies is independent of temperature. In this
work, dopant fractions are given as RE1O1.5 mol%, though in the
literature RE2O3 mol% is also used.

It is known that under oxygen poor conditions ceria can be
reduced leading to the formation of polarons,48,49 and a number
of theoretical studies have been dedicated to this subject.50–56

However, we restrict our simulations to conditions where the
electronic conductivity is significantly smaller than the ionic
conductivity and thus can be neglected.

Doping is limited by solubility. While for some dopants
solubility above x = 0.4 has been reported,1 contradicting
information about the solubility limits is found in the literature
as described in the following. Often X-ray diffraction analysis
cannot identify the development of secondary phases, as they
are very similar to the fluorite structure of ceria. For the
dopants investigated in this work, most studies report solubility
up to about 0.2 o x o 0.6 (cf. Fig. 1),57,58 e.g. Balazs and Glass
found for x = 0.2 minor impurity phases for small (Lu, Yb, Tm)
and large dopants (Nd, La) compared to Ce4+.59 For the even
smaller dopant Sc, the solubility limit is already reached at
3–5%.1,30 For the large dopant La, the solid solution Ce0.8La0.2O1.9

appears to be only metastable as decomposition is observed
after sintering for seven days at high temperature.60,61 For Y, Gd
and Sm doped ceria, solubility of at least x = 0.3 up to complete
miscibility is reported.57,62

The lattice parameter of doped ceria depends on the ionic
radius of the dopant. For Ce0.8RE0.2O1.9, the lattice parameter
changes linearly with the dopant radius obeying Vegard’s
law.25,27,59,76 Fig. 1 shows that the lattice parameter decreases
(for small dopants) or increases (for large dopants) with increasing

Fig. 1 Experimental lattice parameter of rare-earth doped ceria as a
function of doping fraction. Measurements were performed in air at room
temperature for Lu,63–65 Yb,66 Dy,67,68 Tb,69,70 Gd,61,71 Eu,69 Sm,71,72

Nd73,74 and La doped ceria.60,75 Lines are a guide to the eye only.
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dopant fraction until a constant value is reached, which indicates
the solubility limit.60,74 For Yb, Dy and Eu doped ceria, a few
deviations from this rule can be found. Earlier measurements
for several dopants from Brauer and Gradinger indicated
lower lattice parameters than those shown in Fig. 1.77 Some
studies even assume a relationship between the association of
oxygen vacancies with dopants and the deviation of Vegard’s
law of the linear relationship between the lattice parameter and
the dopant fraction.58,61,69,78

2.2 Ionic conductivity

In this work, the migration of oxygen vacancies in fluorite-
structured ceria is considered between adjacent tetrahedral oxygen
sites in the (100) direction, as other migration paths possess a
significantly higher jump barrier,44 with a jump distance given by
half of the unit cell length.1 Along this pathway two cations form a
‘migration edge’ through which the migrating oxygen has to pass.
In pure CeO2, only cerium ions are at the migration edge, while
doping with rare-earth (RE) oxide leads to configurations with one
or two RE ions at the migration edge (see Fig. 2). An undoped
migration edge is called Ce–Ce edge. If rare-earth dopants (RE) are
present, the labels Ce–RE edge or RE–RE edge are used.

In this subsection, ionic conductivities for oxygen ion migra-
tion in doped ceria according to experiments are reviewed. For
polycrystalline samples, the total conductivity is influenced by the
bulk and grain boundary domains. In the bulk domain, oxygen
ions jump through the regular lattice. In the grain boundary
domain, jumps take place along or across dislocations and in
space charge zones and are hindered due to the depletion of
oxygen vacancies.79 The separation of both domains is possible
using e.g. impedance spectroscopy measurements where two
semi-circles are observed in the Nyquist plot. For the conductivity
measurements reported in this work, the electronic contribution
to conductivity is negligible.1,80 As shown exemplarily by Steele,80

the total conductivity is determined by the bulk and grain
boundary conductivities, which have conductivity maxima at
different dopant fractions. For small dopant fractions, the total
conductivity is limited by the low grain boundary conductivity.
For large dopant fractions, the conductivity is limited by the low
bulk conductivity. Compared to the total domain, the dopant
fraction leading to the maximum in conductivity xmax is small for
the bulk conductivity.80 The bulk domain is of particular interest
as it represents the inherent property of the doped material
largely without the influence of the microstructure of the
sample.81 Therefore, we focus only on the ionic conductivity of
the bulk in this work.

The bulk conductivity depends significantly on the type of
dopant and the investigated temperature. Faber et al. measured
the bulk ionic conductivity of Yb, Y, Gd, Nd and La doped
ceria between 30 1C and 330 1C.86 For small dopant fractions,
Nd doped ceria possesses the highest bulk conductivities,
where a maximum appears at xmax = 0.03 (Table 1). For large
dopant fractions, Gd doped ceria possesses the highest bulk
conductivities, where a maximum appears at xmax = 0.06–0.18.
Nowick et al.102 reported for Y doped ceria at 181 1C similar
conductivities as those reported by Faber et al. The dopant
fraction leading to the maximum in conductivity xmax decreases
with increasing dopant radius at low temperature. Here, often
the ionic radii according to Shannon are given.26 The relation
between the conductivities of different dopants is similar for all
measured temperatures.

For 500 1C, a summary of several experiments is shown in
Fig. 3. A strong scattering between the experiments of different
research groups is found. The dopant fractions leading to the
maximum in conductivity differ significantly (Table 1).

For all temperatures, the dopant fraction leading to the
maximum in conductivity is found between xmax = 0.02 and
0.38 (Table 1 and Fig. S1, ESI†). For all dopants, at least
one reference is found with a dopant fraction leading to the
maximum in conductivity of about xmax = 0.1. The distribution
of xmax is broad especially for medium ionic radii, which lead to
the highest conductivities. The measured temperature range
and xmax correlate. Measurements at low temperature rather
lead to low xmax, while measurements at high temperature
rather lead to high xmax (cf. Fig. S1, ESI†). Additionally, the
conductivity for a single dopant fraction can be investigated. For
all dopant fractions, a general initial increase and a subsequent

Fig. 2 Possible migration edge configurations for the migration of oxygen
in rare-earth (RE) doped ceria. Ce–Ce edge (left), Ce–RE edge (middle)
and RE–RE edge (right). Cerium ions (green), rare-earth ions (blue), oxygen
ions (red spheres) and oxygen vacancies (red boxes).

Table 1 Dopant fractions that lead to the highest bulk ionic conductivity
for Ce1�xmax

RExmax
O2�xmax/2 samples in the measured temperature range

Dopant xmax Temperature (1C) Ref.

Yb 0.08 30–330 Faber et al.86

Y 0.08 181 Nowick et al.102

0.08 80–200 Wang et al.84

0.08 80–330 Faber et al.86

0.08 500–700 Tian and Chan103,104

Gd 0.06 30 Faber et al.86

0.10 80
0.18 130–330
0.10 500 Steele80

0.10 350–450 Tianshu et al.61

0.20 450–500

Eu 0.38 400–600 Li et al.69

Sm 0.1 250–550 Zhan et al.72

0.15 500–700 Sanghavi et al.97

Nd 0.10 300–500 Zhu et al.101

0.20 500–800
0.03 30–280 Faber et al.86

0.10 330

La 0.02 30–170 Faber et al.86

0.10 170–330

Perspective PCCP



This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 14291--14321 | 14295

decrease in conductivity with increasing dopant radius is found
with a maximum around Gd and Sm doped ceria. For example,
Mogensen et al.105 found for x = 0.1 in Ce1�xRExO2�x/2 at
1000 1C the highest conductivity for the dopant RE = Gd and
lower conductivities for the smaller dopants Sc and Y as well as
for the larger dopant La. Omar et al.83 investigated Lu, Yb, Er,
Y, Dy, Gd, Sm, and Nd doped ceria (x = 0.1) and found for
400–600 1C an increasing conductivity with increasing dopant
radius, which is in disagreement with the other studies. Zajac88

studied Y, Gd, Sm and Nd doped ceria (x = 0.15) at 700 1C where
Gd doped ceria has the highest conductivity. Pérez-Coll et al.87

investigated Y, Gd, Sm and La doped ceria (x = 0.2) and found for
200–700 1C the highest conductivity for Sm doped ceria.

In Fig. 4, the bulk conductivity at 400 1C for x = 0.1 and 0.2 is
extracted. For x = 0.2, doping with Sm leads to the highest bulk ionic
conductivity. For x = 0.1 the conductivity of Gd, Eu, Sm and Nd
doped ceria is similar. As often presented in the literature, the
dashed lines show a linear relationship in sections (volcano-type)
between the ionic radius and the logarithm of the bulk conductivity.
Additionally, in this work, we show a linear relationship between the
ionic radius and the bulk conductivity with solid lines. Both relation-
ships cannot be clearly verified due to strong scattering, especially
for Nd doped ceria. A fit is shown with the red line, while the blue
line and the dashed lines are a guide to the eye only.

Finally, it is surprising, as shown in Fig. 3, that only a few
dopant fractions of Sm doped ceria were examined despite its
high conductivity. Polycrystalline samples were analyzed for
x = 0.1, 0.2 and 0.3,72,83,87,89,90,98,99 or 0.15,88 while Sanghavi
et al.97 investigated single crystal thin films for a few dopant
fractions. For a complete picture, a detailed concentration
series of Sm doped ceria was investigated in this work and
the results will be presented in Section 4.

2.3 Activation enthalpy

The temperature dependent behavior of the bulk conductivity
in doped ceria can be shown in an Arrhenius plot according to

s ¼ A

T
e
�DHa
kBT (see Appendix: theoretical details). Most literature

sources derive an (apparent) activation enthalpy DHa from a
linear relationship between ln(sT) and 1/T: the activation
enthalpy for rare-earth doped ceria was extracted by Faber
et al.86 from measurements between room temperature and
330 1C for several dopants and by many other research groups
from measurements up to 1000 1C for Lu,82,83 Yb,83 Er,83

Y,83–85,87,88,98 Dy,67,83 Gd,61,83,85,87,88,91,92,94 Eu,96

Sm,72,83,88,98,107 Nd74,83,88,100,101 and La doped ceria,87 which will
be compared to simulations in Fig. 25. It should be noted that in
experiments generally the activation enthalpy is extracted while
static calculations only give the electronic energy.47 Both can be
compared as described in our earlier publication.108

Activation enthalpies scatter significantly, e.g. between
0.63 eV and 0.82 eV for Ce0.9Gd0.1O1.95 and between 0.80 eV
and 0.94 eV for Ce0.8Gd0.2O1.9. For Sm and Nd doped ceria,
activation enthalpies scatter between 0.46 eV and 0.72 eV for
Ce0.9Sm0.1O1.95 and between 0.65 eV and 0.82 eV for Ce0.9Nd0.1O1.95.

In the experimental literature, activation enthalpies first
decrease and then increase as a function of dopant fraction,
similar to other fluorite-structured oxides.33 For example, a
decrease between x = 0.001 and 0.02 was found for Y or Nd doped
ceria.84,100 An increases between x = 0.03 and 0.4 was found for
Sm, Y, Gd or Nd doped ceria.72,85,100 Faber et al.86 found minima
in the activation enthalpy at x = 0.02–0.04 (for Nd), 0.08 (Yb),
0.04 (Y), 0.06 (Gd) and 0.02 (La).

For a single dopant fraction, the activation enthalpy
decreases for an increasing dopant radius up to the dopants
Gd, Eu, Sm and Nd and increases afterwards. For example,
Faber et al.86 investigated Yb, Y, Gd, Nd and La doped ceria
where Nd doped ceria has the lowest activation enthalpy. Omar
et al.83 investigated Lu, Yb, Er, Y, Dy, Gd, Sm, and Nd doped
ceria (x = 0.1) and found for Sm doped ceria the lowest DHa,
similar to Zajac,88 who investigated Y, Gd, Sm and Nd doped
ceria (x = 0.15). Pérez-Coll et al.87 investigated Y, Gd, Sm and

Fig. 3 Bulk ionic conductivity of rare-earth doped ceria as a function of
doping fraction. Measurements were performed in air at 500 1C for Lu,82,83

Yb,83 Er,83 Y,83–90 Dy,83 Tb,69 Gd,61,80,83,87–95 Eu,69,96 Sm,72,83,87–90,97–99

Nd73,74,83,88,100,101 and La doped ceria.87 Fourth order polynomials are
fitted to the data as a guide to the eye only (dashed lines) with the
exception of the data of Zajac and Molenda (in parentheses), which were
disregarded due to the strong deviation compared to other literature data.

Fig. 4 Bulk ionic conductivity of rare-earth doped ceria as a function of
dopant radius. Measurements were performed in air at 400 1C for
Ce1�xRExO2�x/2 with x = 0.1 and 0.2 according to references a,83 b,82

c,85 d,67 e,61 f,106 g,92 h,95 i,96 k,74 l,73 m,100 n101 and o.87 The lines show a
linear relationship between the ionic radius and the conductivity (solid
lines) or the logarithm of the conductivity (dashed lines).
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La doped ceria (x = 0.2) and also found the lowest DHa for Sm
doped ceria.

Furthermore, several groups find different activation enthal-
pies for low and high temperatures (see Fig. 5). Here, the
resulting DHa is high for the low temperature region and low
for the high temperature region. This leads to a kink in
the Arrhenius plot around 350–600 1C.72,83,85,87,92,99,100,107 The
difference in activation enthalpy between low and high tem-
perature regions is often interpreted as ‘apparent association
enthalpy’ or ‘apparent association energy’ between an oxygen

ion and rare-earth dopant or an RE
0
CeV

��
O

� ��
associate. In the

following, we will use the more commonly used term association
energy, even though experiments actually give the association
enthalpy. We will show that the assumption of a single RE–V
association energy neglects other interactions which appear
during the oxygen migration. Furthermore comparison of
literature results shows that the apparent association energies
for a single dopant vary. While Omar et al. find apparent
association energies between only 0.02 and 0.05 eV for different
dopants83 and other groups find no kink in the Arrhenius
plot, Gerhardt-Anderson and Nowick determine the apparent
association energy for Sc doped ceria to be 0.67 eV.30 It should
be noted that Wang et al. as well as Gerhardt-Anderson and
Nowick determine the apparent association energy by assuming
a value for the activation enthalpy at high temperature (0.61 eV),
which is estimated using an experimental investigation of
nominal pure ceria and the expected Ca impurity concentration
of the material. Zhang et al. use the same method with an
activation enthalpy at high temperature of 0.63 eV.85 Stephens
and Kilner use the lowest migration energy of different dopant
fractions as a reference to calculate the apparent association
energy.100 The apparent association energies are shown in
Fig. S2 (ESI†). From x = 0.001 to 0.02 a decrease in apparent
association energy for Y doped ceria was found.84 The same is
true for Nd doped ceria from x = 0.01 to 0.03.100 From x = 0.03 to
0.4 an increase in apparent association energy for Y, Gd, Sm

and Nd doped ceria was found.72,84,85,100 Therefore, a minimum
for the apparent association energy as a function of the dopant
fraction was reported.

2.4 Proposed origins of the conductivity maximum

The oxygen ion conductivity increases steeply with increasing dopant
fraction of the trivalent rare-earth dopant to a maximum at mostly
xmax = 0.08–0.2 and then decreases gently. In the following,
interpretations according to the literature are summarized.

The initial rise in oxygen ion conductivity with increasing
dopant fraction is caused by the creation of oxygen vacancies
according to eqn (1).31 If no further interactions existed, the
ionic conductivity would increase to a maximum until half of the
oxygen sublattice is unoccupied according to s p x(1 � x).109

In experiments, the maximum in conductivity appears at
significantly lower dopant fractions. According to the literature,
the position of the maximum clearly depends on the number
of oxygen vacancies,‡ which are created per dopant, as in Ca2+

or Sr2+ doped ceria the maximum appears at lower dopant
fractions.1,110–113 The reasons given for the decrease in con-
ductivity are the association between oxygen vacancies and
dopants, the ordering of oxygen vacancies or a modified jump
probability of the oxygen vacancies.

In most of the literature, it is commonly assumed that the
maximum in oxygen ion conductivity is only caused by the
association between oxygen vacancies and dopants. The associa-
tion originates from the Coulomb interaction of the defects and
local relaxation of the crystal lattice. In this work, electronic
migration energies are used to describe the microscopic jump
process according to an earlier work108 rather than activation
enthalpies. The migration energies for vacancy jumps away from
the associating dopant (dissociative jumps) are higher than in
pure ceria, while jumps to the dopant are favored (associative
jumps). These jump configurations are shown in Fig. 6. In simple
terms it is often described that the oxygen vacancies are trapped
or immobilized by the almost immobile dopants and thereby the
concentration of the free vacancies is reduced.§ Several experi-
ments and calculations support this picture.

In experimental measurements of the ionic conductivity or
the diffusion coefficient, it is assumed that the high-temperature
and low-temperature regimes differ in activation enthalpy by
the apparent association energy between the migrating oxygen
vacancy and the dopant as described above. While at low tempera-
ture vacancies are trapped, at high temperature sufficient energy is
available to free the vacancies, which leads to a decrease in
apparent activation enthalpy.30,72,84 However, activation enthalpies
at high temperature still depend on the dopant fraction72,100 and
type of dopant.83 This indicates that the assumption is restricted
and might only be correct in dilute solutions as discussed in the
literature.84,114 In general, semi-empirical36,37 and ab initio41,42

Fig. 5 Bulk ionic conductivity of Ce1�xRExO2�x/2 as a function of temperature.
Measurements were performed for Sm and Gd doped ceria by Zhan et al.72 and
Zhang et al.85 A low and a high temperature region can be found with different
activation enthalpies.

‡ However, for Ca2+ doped ceria for example, the association energy and the jump
barriers around Ca2+ differ significantly compared to most rare-earth dopants,
which is rarely discussed in the literature.
§ This picture is an oversimplification as vacancies are not trapped for an
infinitely long duration.
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calculations can be used to support the picture of the apparent
association energies found in conductivity measurements.
Schmalzried used electrostatic interactions, which lead to
different probabilities for forward and backward jumps, to
describe a relationship between increasing activation energies
and increasing dopant fraction.32

The formation of associates is also found in other experi-
ments: neutron diffraction experiments of yttria-stabilized
zirconia (YSZ) show not only sharp Bragg reflections but
also a background that is modulated with the scattering
vector. This diffuse scattering indicates the presence of not
completely ordered atoms such as oxygen ions, which are
moved towards the vacancies, or possibly associates of dopants
and vacancies.115 Electron spin resonance spectroscopy suggests
that charged defect complexes of dopants and an oxygen vacancy

RE
0
CeV

��
O

� ��
exist at low dopant fractions.116 Extended X-Ray

Absorption Fine Structure (EXAFS) measurements of the coor-
dination numbers of cations and anions confirm the formation
of associates.117–120 Finally, Nuclear Magnetic Resonance
(NMR) measurements support the formation of associates for
45Sc doped ceria,121 89Y doped ceria,121–123 and 139La doped ceria.124

While the formation of associates is commonly accepted, the
dopant fraction at which associates emerge and influence the
conductivity is a topic of discussion. Early approaches assumed
that discrete localized clusters separated from the ideal cerium
lattice are present and that their concentration can be
described using equilibrium thermodynamics.30 However, this
model failed at larger dopant fractions because no further
interactions are considered.84 Besides association, research
groups presume the formation of defect clusters28,92 or nano-
scale domains: especially at high dopant fractions, Tien and
Subbarao,125 Nakamura,126,127 Ou et al.128,129 and Hooper
et al.130 reported an ordering of the oxygen vacancies leading
to reduction of the oxygen ion conductivity.

While the association and ordering of defects can be inves-
tigated experimentally, the influence of both phenomena on the
oxygen ion migration can only be speculated on. Thus, many
investigations show that attractive and repulsive interactions

are not sufficient to describe the experimental results without
considering modified jump probabilities or migration energies.

Murray and Murch determined the oxygen ion conductivity
using Kinetic Monte Carlo (KMC) simulations and explained
the maximum in conductivity as a function of the dopant
fraction.38 For this purpose, they used migration energies for
oxygen ion jumps depending on the local environment, which
were calculated using empirical potentials. Here, jump environ-
ments with the same distance between a dopant and the migrating
oxygen vacancy before and after a jump possess different
migration energies than jumps in pure ceria. Murray and
Murch found for high dopant fractions that oxygen vacancies
jump mostly in the vicinity of dopants. Therefore, they do not
contribute to the oxygen ion transport through the crystal and
the ionic conductivity decreases.

Shimojo et al. deduced from molecular dynamics simulations
of yttria-stabilized zirconia (YSZ) using empirical potentials that
the ionic conductivity is less influenced by the Y� V��O associates,
but rather by lower jump probabilities of oxygen ions around Y
dopants.131 Indeed, it is rarely discussed that doping leads to
migration configurations, where oxygen vacancies and dopants
have the same distance before and after a jump. These config-
urations possess a symmetric jump profile: initial and final
states are energetically equivalent. Forward and backward
jumps have the same migration energies. For large dopants,
the migration is typically hindered, i.e. the oxygen ion is
blocked. Migration energies increase for an increasing number
of large dopants at the migration edge as illustrated in Fig. 7.
Meyer and Nicoloso showed using KMC simulations that the
interactions between nearest neighbors of oxygen vacancies and
dopants on regular lattice sites are not sufficient to calculate the
oxygen ion conductivity, but rather that a migration energy
model is required.132 In 2006, we showed using an analytical
model that the combination of nearest neighbor interaction
and reduced jump probabilities could explain qualitatively the
experimental findings.34

The question remains whether immobilized vacancy–dopant
associates, an ordering of the vacancies and modified jump

Fig. 6 Migration configurations in rare-earth doped ceria. The upper
diagram shows the energy of the system as a function of the reaction
coordinate for the configuration change that is shown below. For colours,
see Fig. 2. The migration energy increases if the oxygen ion jump weakens
the association between the oxygen vacancies and the dopants.

Fig. 7 Migration configurations in rare-earth doped ceria according to
Fig. 2. The upper diagram shows the energy of the system as a function of
the reaction coordinate for the configuration change that is shown below.
The migration energy increases for an increasing number of large dopants
at the migration edge.
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probabilities influence the ionic conductivity separately, simulta-
neously or are mutually dependent.

2.5 Proposed origins of the change in conductivity for
different dopants

The oxygen ion mobility depends not only on the dopant fraction
but also on the type of dopant. First theories postulated that the
highest oxygen ion conductivity occurs for dopants with the least
distortion of the crystal lattice.31 In 1981, Wang et al.84 and
Gerhardt-Anderson and Nowick30 suggested that the optimal
dopant has the ionic radius of the Ce4+-cation. However, in
the next 15 years, different dopant radii leading to the least
distortion of the crystal lattice were proposed.1,28,133–136

Alternatively, the influence of different dopants on the ionic
conductivity is attributed to the formation of associates. In
experiments, EXAFS measurements show the formation of
oxygen vacancy–dopant associates based on the coordination
numbers or the distances between anions and cations. Here,
dopants, which lead to high oxygen ion conductivities like Sm
and Gd, involved less formation of associates than other
dopants like Y or La.119,120,137 However, some EXAFS measure-
ments deviate from this rule.118 NMR measurements confirm a
stronger association between Sc dopants and oxygen vacancies
compared to Y dopants and oxygen vacancies.121 Association
energies derived from early impedance experiments and calcu-
lations using potentials of the Born–Mayer form show that
dopants, which lead to high oxygen ion conductivities, possess
lower association energies (Fig. S2, ESI†).30,36,37 Here, oxygen
vacancies are less trapped by dopants and have higher mobility.
According to previous reports, the strong association for small
dopants (e.g. Sc) is based on Coulomb interactions, while large
dopants (e.g. La) form associates due to minimal stress in
the crystal lattice.1 These opposed effects should lead to the
minimal association energy for Gd doped ceria.

However, subsequent experiments demonstrated that apparent
association energies scatter or activation enthalpies are even tem-
perature independent and the ionic conductivity exhibits no kink in
the Arrhenius plot (see Section 2.3). Apparent association energies
depend on the dopant fraction with a minimum around x = 0.03.
For Sm doped ceria, large apparent association energies are reported
despite its high ionic conductivity (Fig. S2, ESI†). Later, empirical138

and ab initio calculations41,44,46 showed that the association energy
decreases with increasing ionic radius up to La. These and further
calculations also show that, for large dopants, oxygen vacancies no
longer reside in closest possible proximity to the dopants (nearest
neighborhood, 1NN), but in the next-adjacent location (next nearest
neighborhood, 2NN).139,140 The latter is in contrast to calorimetric
measurements of La doped ceria where vacancies were found to
remain predominantly in the nearest neighborhood to the trivalent
dopant.141 Clearly, the microscopic association between dopants
and oxygen vacancies and the macroscopic apparent association
energy e.g. derived from impedance experiments are connected.
However, microscopic and macroscopic processes are not equiva-
lent. The macroscopic conductivity is a thermodynamic average of
all jumps occurring in the solid. In this work, Kinetic Monte Carlo
(KMC) simulations are used to link both processes.

Furthermore, theoretical studies show that, besides associa-
tion, other modified jump probabilities for different dopants exist.
For example, we calculated migration energies for variously doped
ceria using density functional theory (DFT) in 2009.44 However,
for similar migration configurations, the variation of the type of
dopant leads to different trends in the literature.41,142–145 The
origins of these discrepancies are investigated in this work.

If the dopant fraction or the type of dopant is varied,
experiments suggest a relationship between conductivity and
apparent activation enthalpy. It has been suggested that the
maximum in conductivity correlates with a minimum in activa-
tion enthalpy as a function of dopant fraction and dopant type.
Wang et al.84,102 showed for Y doped ceria that the maximum of
the conductivity at 182 1C for different dopant fractions occurs at
similar compositions as the minimum in activation enthalpy.
The same applies to the data of Faber et al.86 with the best
dopants Gd and Nd and to the data of Pérez-Coll et al.87 with the
best dopant Sm. Mori et al. reported as well that the activation
enthalpy mirrors the maximum in the conductivity for several
dopant fractions in Gd doped ceria.146 Deviations from this
trend are shown by Omar et al.83 and Zajac.88 Similar to the
association energy, microscopic migration energies and macro-
scopic activation enthalpies are connected. In this work, again
KMC simulations are used to link both processes.

3 Trapping and blocking

In this section, we describe the defect interactions and their
influence on the migration energy. In doped ceria, rare-earth
dopants (RE) and oxygen vacancies (V) are introduced as point
defects and a vast amount of possible ionic configurations
around any oxygen ion jump exists. Especially the interactions
between dopants and vacancies (RE–V association) as well as
the interactions between vacancies (V–V repulsion) influence
the migration energy. In this work, a model is developed to
predict migration energies for all possible jump configurations in
doped ceria. For this purpose, migration barriers are investigated
for energy contributions that are energetically symmetric for both
migration directions, i.e. the energy contribution is identical for
forward and backward jumps, as well as energetically asymmetric
for forward and backward jumps. Both cases were already dis-
cussed in Section 2.4. Positive symmetric contributions, relative to
pure ceria, increase the migration energy for both forward and
backward jumps similarly. While the equilibrium defect distribu-
tion is independent of these symmetric contributions, oxygen
vacancies are kinetically hindered and therefore blocked (blocking).
Positive asymmetric contributions lead to a larger migration
barrier for the forward jump away from a dopant but a smaller
migration barrier for the backward jump. The defect distribution
is significantly influenced. Vacancies reside more often in the
neighborhood to the dopant (trapping).

As a first example, only the six nearest cation sites around an
oxygen vacancy jump are considered, the ‘6-cation environment’
(see Fig. 2). The two cation sites forming the migration edge
have the same nearest neighborhood distance to the oxygen
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vacancy before and after the jump (1NN 2 1NN RE–V, see Fig. 7)
and are nearest to the migrating oxygen ion in the transition
state. We define this type of dopant position as geometrically
symmetric. The other two cation site pairs are near to either the
initial or final position of the migrating oxygen vacancy. These
sites are referred to as 1NN - 2NN RE–V, i.e. the oxygen vacancy is
in 1NN position to the dopant in the initial and 2NN in the final
position of the jump, or 2NN - 1NN RE–V, accordingly. We define
this type of dopant position as geometrically asymmetric.

It seems likely that geometrically symmetric jump configura-
tions lead to symmetric energy contributions to the migration
barrier and also that geometrically asymmetric jump configura-
tions lead especially to asymmetric energy contributions to the
migration barrier. Therefore, we investigated the migration
energy of symmetric jump configurations for a blocking effect
and the energy difference between the final and the initial state,
which is referred to as interaction energy, of geometrically
asymmetric jump configurations for a trapping effect.

Initially, we assume that the influence of the cation and
anion sublattice on the migrating oxygen ion can be separated.
This means that RE–V and V–V interactions have the same
influence on the migration energy whether they occur either
individually or simultaneously. Additionally, as few defects as
possible are used to calculate parameters for the migration energy
model since long-range Coulomb interactions lead to the repulsion
of the defects and their copies due to the periodic boundary
conditions, which are applied in density functional theory (DFT)
calculations. In this work, energies are extrapolated to an infinitely
large supercell to minimize interactions and dependencies on
the supercell size. Subsequently, the model is tested versus
defect-rich cells with experimental defect concentrations.

3.1 Trapping: interaction energy

3.1.1 RE–V association energy. In this work, the attractive
1NN and 2NN RE–V association energies, which cause the trapping
of vacancies near dopants, were calculated in 2 � 2 � 2 and 3 �
3 � 3 supercells containing 95 and 323 atoms, respectively. RE–V
association energies in Fig. 8 are given relative to the 3NN RE–V
association energy, according to DE1

RE–V = E(1NN) � E(3NN) and
DE2

RE–V = E(2NN)� E(3NN), where E(xNN) is the energy of the supercell
with a xNN RE–V distance. Further energy differences are small,
e.g. DE4

Sm–V = E(4NN)� E(3NN) o 0.02 eV in a 3� 3� 3 supercell, and
is set to zero in this work. Therefore, the RE–V association
energy is ‘terminated’ at 3NN. Using the finite size correction
according to Makov and Payne (see Appendix: computational
details), energies for an infinitely large supercell are obtained
(‘inf’). For comparison, the Coulomb energy was calculated

ECoulomb ¼
q1 � q2
4pe0err

(2)

with the charges q1 and q2 of the defects compared to an ideal
lattice according to eqn (1), the dielectric constant for vacuum
e0, the relative dielectric constant for pure ceria er of about 25,
which was calculated using DFT, and the defect distance r.
Similar to the DFT calculations, the Coulomb energy is given
relative to the Coulomb energy at 3NN. The relative Coulomb

energy possesses a value that is in the range of the calculated
association energies. The reasons for the broad distribution of
the calculated association energies are local lattice relaxations
and different electron densities. These effects lead to large
differences between the association energies of different
dopants as already reported in the literature.41,44,142–145

Fig. 8 shows a monotonous decrease of the absolute value of
the 1NN RE–V association energy with increasing dopant size.
For the absolute value of the 2NN association energy, a minimum
is found for the Lu–V association. An energetically preferred 1NN

association is found for small dopants (e.g. Sc), while for the
large dopant La the 2NN association is preferred, in agreement
with the literature.41,44,46,145 Mn2+ and Yb3+ show deviation from
this behavior. However, Mn is not a rare-earth element and has a
different charge state and was only chosen as it has a similar
ionic radius as Ce4+. In addition, the applied PAW–GGA–PBE
potential (see Appendix: computational details) for ytterbium is
optimized for Yb2+.

In Fig. 8, the results for the 2 � 2 � 2, the 3 � 3 � 3 and the
extrapolated supercell are shown. For dopants smaller than Nd,
the absolute value of the association energy increases with
increasing cubic supercell sizes. Lu dopants and oxygen vacan-
cies even repel each other on the next nearest neighbor position
(2NN) in a 2 � 2 � 2 supercell. The Nd–V association energy is
independent of the supercell size. For Nd, the 1NN and 2NN RE–V
association energies are also identical. The absolute value of
the La–V interaction energy increases for smaller cubic super-
cell sizes. All these supercell-size-dependent effects emphasize
the need for extrapolation of the association energy to an
infinitely large supercell to mitigate finite size effects.

Lu3+ and Mn2+ have a similar ionic radius as Ce4+. Therefore,
it could be assumed that their strong association with oxygen
vacancies is not caused by elastic contributions, i.e. local distor-
tions and electron density distributions, but only the Coulomb
interaction. In fact, for the 3 � 3 � 3 supercell, the 1NN Mn–V
association is twice as large as the 1NN Lu–V association in

Fig. 8 RE–V interaction energy as a function of the ionic radius of RE3+.
Different supercell sizes are calculated under the assumption of DE3

RE–V = 0
(see text). The horizontal lines indicate the classical Coulomb energies for
the nearest neighbor and next nearest neighbor distances, which are
calculated for an ideal lattice geometry.
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agreement with their different charge states relative to the ideal
lattice. The absolute value of the 1NN Mn–V and Lu–V associa-
tion energy is 27% larger than the corresponding Coulomb
energy (�0.58 eV for Mn). However, the 2NN Lu–V association
energy is nearly zero and the absolute value of the 2NN Mn–V
association energy is 71% larger than the absolute value of the
calculated Coulomb energy (�0.12 eV). Therefore, the above-
stated assumption fails and the association energy is influenced
by elastic contributions. Beyond that, the equivalent radii for
Ce4+ and Lu3+ seem to affect the association energy as the 2NN

RE–V association energy has a maximum for Lu.
The strong association for Sc is in agreement with its low

experimental solubility.64,118 Metropolis Monte Carlo calcula-
tions confirm phase separations for larger dopant fractions
caused by formation of Sc–V associates.46

The results of this work are compared with our earlier publica-
tions in detail in the Appendix: computational details.44,46 Compar-
ison with these and other theoretical studies shows a strong
influence of the used method, the supercell size and the termination
at 3NN on the association energy.36,37,41,138,142–145,147–151 As a result,
both positive and negative RE–V association energies were
reported and the transition between energy-favorable 1NN and
2NN interactions appears at different dopant radii. For example,
Dholabhai et al. predicted an energy-favorable 2NN Pr–V inter-
action at a dopant radius of 1.126 Å,145,147,148 while Andersson
et al. and Nilsson et al. already found similar association energies
for 1NN and 2NN Pm–V at a dopant radius of 1.093 Å.41,151

The values for the ‘apparent association energy’ as discussed
in Section 2.3 are defined as positive values and confirm a strong
association of Sc doped ceria. Likewise, a stronger association of
Y compared to Gd or La is measured. The range of calculated
and experimental apparent association energies is similar. How-
ever, the smallest apparent association energy is measured for
Gd, in contrast to the calculated 1NN association energies.
Though the experimental values scatter and earlier considera-
tions also mention the possibility of extrapolating experimental
values to infinitely low concentrations,46 a significant difference
between calculated 1NN association energies and experimental
apparent association energies is found. Consequently, a direct
comparison of calculated 1NN association energies with experi-
ments might not be possible as e.g. for La doped ceria, oxygen
vacancies are also trapped in the 2NN position.

The resulting influence of several RE–V and additional V–V
interaction energies (see the next section) on the ionic conduc-
tivity can be properly compared with conductivity experiments by
calculating the temperature-dependent ionic conductivity using
Kinetic Monte Carlo (KMC) simulations (see Appendix: theore-
tical details and Kinetic Monte Carlo).

3.1.2 V–V repulsion energy. For the repulsive interaction of
two oxygen vacancies, a fast decrease in the positive repulsion
energy is found between the 1NN and 2NN interaction (Fig. 9).
The further interactions are similar up to the 5NN V–V inter-
action. For larger defect distances, the V–V interaction is small,
e.g. below 0.02 eV between the 6NN and 5NN V–V interaction.
Therefore, all V–V repulsion energies are given relative to the 5NN

V–V interaction and larger defect distances will be neglected in

the following. For the 3NN V–V interaction, there are two possible
geometries for the space diagonal, one without (3NNa) and one with
a cation between the oxygen vacancies (3NNb). Both show signifi-
cantly different repulsion energies due to lattice relaxations caused
by the cation between the oxygen vacancies, though the repulsion
energy difference decreases with increasing supercell size.

The 1NN V–V interaction energy is independent of the super-
cell size. For other V–V distances, increasing the supercell sizes
leads to both lower and higher repulsion energies, probably
due to different shielding effects of the surrounding cations.

The results are in agreement with Ismail et al., who also found
a rapid decrease in the V–V repulsion after the first shell, similar
energies for 2NN to 4NN and a negligible 5NN V–V interaction.152

The results are compared with our earlier publications in the
Appendix: computational details.

3.1.3 High defect concentrations. Until now, only the
interaction of two defects was investigated. Now, a pair inter-
action model is assumed for the configuration energy of the
lattice where interaction energies of multiple defects are just
summed up and thus linearly scaled. Therefore, the lattice
configuration energy Econf can be calculated with the number
of interactions Ni and the distance i based on DFT calculations
of the RE–RE, RE–V and V–V interaction energies Ei:

Econf ¼
X
i

NRE�RE;i � ERE�RE;i þ
X
i

NRE�V;i � ERE�V;i

þ
X
i

NV�V;i � EV�V;i

(3)

DFT calculations of a 3 � 3 � 3 supercell with two Sm dopants
and one oxygen vacancy, in accordance with eqn (1), confirm
the validity of the pair interaction model as already found in an
earlier work from 2009.44 The energy differences between the
1NN and either the 2NN, 4NN or 5NN Sm–V interaction nearly
double for an additional Sm dopant, which is introduced at the
same interaction distance to the oxygen vacancy, with devia-
tions less than 0.005 eV.

Fig. 9 V–V interaction energy as a function of the V–V distance. Different
supercell sizes are calculated under the assumption of DE5

V–V = 0 (see text).
The line indicates the classical Coulomb energy, which is calculated for
an ideal lattice geometry.
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For higher defect concentrations that are similar to dopant
fractions in experimentally used materials, Metropolis Monte
Carlo simulations in a 3 � 3 � 3 supercell were performed
according to an earlier work46 to equilibrate the positions of
cations and anions at 1500 K and subsequently only the anion
positions at 900 K similar to the experimental sintering process
for Ce1�xSmxO2�x/2 with x = 0.05, 0.1 and 0.15. Subsequently,
the energy of the supercell was determined using DFT calcula-
tions in the same supercell. In this work, the influence of the
lattice configuration energy on the oxygen migration is of
special interest. Therefore, typical jump configurations were
identified and jumps were performed using again DFT calcula-
tions. The difference between the initial and the final state of
an oxygen ion jump (e.g. illustrated in Fig. 6) gives a lattice
configuration or interaction energy difference, which is crucial
to the investigation of diffusion in doped ceria. The DFT
interaction energy differences were compared with the lattice
configuration energy differences according to eqn (3). For
eqn (3), the calculated interaction energies for infinitely dilute
defects were used. This comparison helps to validate both the
use of the pair interaction model and the used interaction
energies.

In total, 450 interaction energy differences were investi-
gated. It should be noted that the DFT calculations now include
RE–V and V–V interactions simultaneously. Fig. 10 shows a
good agreement between model lattice configuration and DFT
interaction energy differences, especially for low defect con-
centrations. With increasing dopant fractions, the standard
deviation ss increases to 0.09, 0.12 and 0.15 for x = 0.05, 0.1
and 0.15, respectively. Considering all dopant fractions, ss is
0.13. The good agreement validates that a pair interaction model
with independent RE–V and V–V interactions can be used for the
lattice configuration energy.

3.2 Blocking: migration edge

Fig. 11 shows migration energies in pure and diluted rare-earth
doped ceria of different supercell sizes at constant volume,
which is given by the relaxed defect-free bulk material at
zero temperature.¶ Three selected geometrically symmetric
jump configurations are shown: the Ce–Ce, Ce–RE and RE–RE
edge (cf. Fig. 2).

For each rare-earth dopant, the migration edge energy for
the RE–RE edge is larger than for the Ce–RE edge. A minor
exception is only the 2 � 2 � 2 supercell of Sc doped ceria,
probably due to a too small supercell size. Doped edges can
have lower migration energies than pure ceria, e.g. for Sc, Mn
and Lu doped ceria. For large dopants at the migration edge,
the migration of oxygen ions is blocked. The migration edge
energies for Ce–RE and RE–RE edges increase with increasing
dopant size. The unusual behavior of Yb doped ceria may be a
result of the PAW-PBE potential (see Appendix: computational
details) used in the Vienna Ab initio Simulation Package (VASP)
for Yb, which was originally optimized for Yb2+. Generally,
a nearly linear behavior between migration edge energy and
dopant radius is found.

The migration energy for an infinitely large supercell (‘inf’)
was calculated according to Makov and Payne (see Appendix:
computational details) using the 2 � 2 � 2, 3 � 3 � 3 and
4� 4� 4 supercells. We found that it is sufficient to use only the
2 � 2 � 2 and 3 � 3 � 3 supercells (Fig. 11) as the extrapolated
result is similar. The supercell size determines the distance
between the migrating oxygen vacancy and its mirror image,

Fig. 10 Model configuration and DFT interaction energies with intuitive
parameters as discussed in Section 3.3. Ce1�xSmxO2�x/2 in a 3 � 3 � 3
supercell. The migrating oxygen vacancy interacts with both dopants and
vacancies. The DFT calculations include simultaneous RE–V and V–V
interactions. Association energies around the migrating oxygen vacancy
up to 2NN RE–V and 4NN V–V (5.41 Å) are added up. Intuitive parameters
are chosen for the extrapolated supercell with the termination
Eass(3NN RE–V) = 0 and Eass(5NN V–V) = 0. The line identifies identical
model and DFT results, and the gray area shows an error of 0.1 eV.

Fig. 11 Migration energy as a function of the ionic radius of RE3+ of
the Ce–Ce, Ce–RE and RE–RE edge (cf. Fig. 2). Different supercell sizes
are calculated.

¶ Relaxing the volume of supercells, which are containing defects, would lead
to different lattice parameters. Calculations could be performed at constant
pressure, i.e. the volume would be relaxed during the migration. This would lead
to a change in the volume of both initial and transition states. However, the
change in volume during the jump of the oxygen ion is limited as atomic
displacements in a solid proceed with the speed of sound. Therefore, calculations
of the constant volume case are used in the following.
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i.e. its copy due to the applied periodic boundary conditions. The
change in migration energy with increasing cubic supercell size
is negative for large dopants (e.g. La), positive for small dopants
(Sc) and negligible for Lu, which has a similar ionic radius as
Ce4+, mainly due to lattice relaxation effects.

Correlations between the migration edge energy and the
atom coordinates show that the migration energies of the edge
configurations change linearly with the widening of the edge
cations.108 The widening is the difference of distances of the
edge cations in the transition state and the initial state. Simply
described, this means that the cations at the edge must be
pushed apart during the jump.

Additionally, the dopants Mn2+, Tm3+ and Er3+ are shown as
they have migration energies similar to pure ceria. Mn2+ shows a
similar behavior of the migration edge energy as a function of
ionic radius as the RE3+ dopants though it has a different charge
state. This is contrary to the Coulomb-like behavior of the Mn–V
association energy (see Fig. 8) and suggests that the migration
energy is rather a function of the widening of the edge cation
while the association energy is dominated by the Coulomb energy.

Comparing the supercell size dependencies of the migration
energy (Fig. 11) and the association energy (Fig. 8) is surprising.
For La doped ceria, the migration energy decreases with
increasing cubic supercell size while the association energy
increases. As both energies feature an opposite sign, the
absolute value of both energies decreases with increasing cubic
supercell size for La doped ceria (cf. Fig. S3, ESI†), i.e. both
energies are overestimated in small supercells. The supercell
size dependence changes for smaller dopants: for the Ce–Lu
and Lu–Lu edge, the migration energy is independent of super-
cell size. For Nd doped ceria, the association energy is inde-
pendent of supercell size. For the small dopant Sc, the absolute
value of the migration and association energy increases with
increasing cubic supercell size.

The results are in agreement with the literature: the migra-
tion energy increases with an increasing number of large
dopants at the migration edge for Y,38 La153 or other dopants
as shown in our earlier works.44,46 Additionally, we found an
increase in migration energy with increasing dopant radius for
doped migration edges.44 Further literature results support this
trend: for the Ce–RE edge, Dholabhai et al. found an increase in
migration energy with increasing dopant radius of the dopants
Gd (0.59 eV),147 Sm (0.66 eV)145 and Pr (0.78 eV).148 For the RE–RE
edge, Yoshida et al. found an increase in migration energy with
increasing dopant radius for Y, Sm and La doped ceria.142

Andersson et al. confirmed this trend for several dopants.41

3.3 Model of the migration energy

3.3.1 Definition of the model. In doped ceria, numerous
arrangements of cerium ions, dopants, oxygen ions and oxygen
vacancies are possible around the migrating oxygen ion. The
activation energies of oxygen migration in these numerous ionic
configurations can be predicted by creating a model for the
migration energy. In this regard, the lattice sites, whose occupa-
tion influences the migration energy, have to be identified and
their influence has to be quantified.

According to Coulomb’s law, forces between charged particles
depend on their distance. Therefore, lattice sites in a sphere
around the migrating oxygen ion are tested for their influence
on the migration energy. The radius of the sphere is called
interaction radius. Since the migrating oxygen ion changes its
position during a jump, the interaction sphere can be expanded
around the oxygen ion in the initial state, the transition state
and the final state. As defects are easier to track, interactions
are labeled in accordance with the position of the migrating
oxygen vacancy in the start (s), center (c) or destination position
(d) as shown in Fig. 12.

On each lattice site of rare-earth doped ceria either a host
ion (Ce, O) or a defect (RE, V) is positioned. For each lattice
position, which is considered in the calculation of the migra-
tion energy besides the positions of the migrating oxygen, the
number of jump configurations multiplies by 2. This leads to a
total number of 2n jump configurations for n influencing
positions, where some jump configurations are symmetrically
equivalent. For example, for Fig. 12, up to 26 jump configura-
tions are possible. Furthermore, including the next anion shell
around the start and destination position would lead to 216

jump configurations.
If not every configuration can be calculated, the approxi-

mation could be formulated that the influence of each lattice
site is independent of the occupation of all other lattice sites.
For every lattice site, the change in migration energy could be
quantified in case a defect (RE, V) is present. This follows a pair
interaction model, which has already been successfully applied
above for the lattice configuration energy. Lattice sites featuring
the same change in migration energy could be grouped according
to their distance i to the start, center or destination position p
of the oxygen vacancy during the jump. Then, the migration
energy can be calculated according to

Emig ¼ Emig;pure þ
X
p;i

eshell;p;i; (4)

where Emig,pure is the migration energy in the pure material,
where no RE–V and V–V interactions are present, and eshell,p,i

gives the change in migration energy caused by each group.
The migration energy can either change linearly for increasing

number of defects Nshell,p,i on lattice sites of the group p,i:

elin
shell,p,i = Nshell,p,i�Eshell,p,i, (5)

Fig. 12 Centers of interaction for oxygen migration in rare-earth doped
ceria. The positions of the migrating oxygen vacancy are given: start (s),
center (c) and destination (d). For colours, see Fig. 2.
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where Eshell,p,i is the energy change per defect of the migration
energy. This is called linear scaling. If all ions were fixed at the
positions of the ideal lattice, Coulomb’s law would suggest that
all lattice sites with the same distance to the migrating oxygen
ion can be grouped with linear scaling.

However, in reality, a displacement of ions (relaxation) takes
place. Therefore, the influence of individual lattice sites can
depend on other lattice sites. This is, for example, the case
when multiple defects form a cluster, which influences the
migration energy differently than the sum of the separate
defects. Nevertheless, the migration energy can still be modeled
if lattice sites can be grouped and the change in migration
energy depends on the total number of defects in the group.
The change is not proportional to the number of defects but
for every number of defects a change in migration energy is
defined, e.g. for a group with two lattice sites the migration
energy contribution is

ecatshell;p;i ¼

0 for 0 defects

E1
shell;p;i for 1 defect

E2
shell;p;i for 2 defects

8>>><
>>>:

: (6)

This is called categorical scaling.
For a better understanding, the migration energy changes

can be classified as symmetric and asymmetric contributions
(Fig. 13). Symmetric influences are characterized by changes in the
migration energy, which are independent of the jump direction.
If the presence of a defect changes the migration energy
identically for forward and backward jumps, the resulting
energy contribution is symmetric (blocking). Configurations
that are geometrically symmetric around the jump center
feature symmetric influences.

If the change in migration energy due to doping is different
for the forward and backward jump of a specific ionic configu-
ration, asymmetric energy contributions exist. Geometrically
asymmetric configurations with defects near the start or
destination position are often influenced by both asymmetric
(trapping) and symmetric (blocking) contributions to the migra-
tion energy.

Furthermore, it is possible to combine groups near the start
and destination position if their influence on the migration
energy is exactly the opposite of each other. For example,
if groups near the start and destination position scale
linearly and their energy parameters are related according to
Eshell,d,i = �Eshell,s,i, both groups can be combined:

elin
shell,ds,i = (Nshell,d,i � Nshell,s,i)�Eshell,d,i (7)

The latter can be visualized by a linear interpolation between
the energies of the initial and final state (cf. Fig. 13 for
Emig,s,asymmetric = �Emig,d,asymmetric), which is common in the
literature.154,155 Alternatively, a polynomial function for a better
emulation of the assumed Coulomb potential between defects
or sinusoidal shaped migration barriers can be introduced.156

The migration energy difference between forward and back-
ward jumps Emig,forw. � Emig,backw. = DEconf is then given by the
configurational energy difference between the final and initial
state, which can be modeled according to eqn (3).

Finally, a model for the migration energy should predict the
migration energies accurately with as few parameters as possi-
ble. Therefore, the interaction radius of the spheres around
start and destination positions as well as the sphere around the
center position should be reduced to a minimum. Possible
interactions in doped ceria are shown in Fig. 14. A similar
figure could be created for the destination position. The
interaction radius should be chosen such that defects placed
outside of the interaction radius have a negligible influence
on the migration energy. As a first approximation, the above-
discussed interaction radii of the RE–V and V–V interaction
energies can be used.

For the nomenclature of the models, the following applies: a
model that uses the first shell, which is centered at the jump
center, is called ‘‘c1’’. In doped ceria, a c1 model includes
parameters for the Ce–Ce, Ce–RE and RE–RE edge. Further
shells around the start, destination and center positions
are numbered consecutively counting both cation and anion
sublattices. For example, at the center positions, the models c1,
c4, c5, c7 and c8 exist, while the 2nd, 3rd and 6th shells are

Fig. 13 Migration energy model predicting forward (Emig,forw.) and back-
ward jumps (Emig,backw.) using symmetric (Emig,symmetric) and asymmetric
contributions (Emig,asymmetric). Emig,pure is the migration energy in the pure
material.

Fig. 14 List of RE–V (light green) and V–V interaction distances (red) of
the migrating oxygen vacancy during a jump in doped ceria. Each inter-
action is represented by a bar. Bars are given as a function of the distance
to the start position (up) or center position (down). However, interactions
are labeled according to the distance of the defect to the oxygen vacancy
before and after the jump. Therefore, bars with the same label can appear
at different distances from the start position (up) and the center position
(down). For example, ‘‘1–1,2’’ refers to 1NN - 1NN and 1NN - 2NN jumps,
while ‘‘1–4;2–3’’ refers to 1NN - 4NN and 2NN - 3NN jumps.
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centered at the start and destination positions. Alternatively,
the interaction radius is directly given by the interaction dis-
tance. Here, distances are given according to the experimental
lattice parameter of ceria at room temperature (5.41 Å).1 Energy
contributions using the difference between the number of
defects between the destination and start position are called
‘‘sd [ds]’’. From Fig. 13 it is obvious that these asymmetric
contributions are connected in the linear approach with half of
the change in energy between the initial and final state, which can
be described as interaction energy difference. Energy contribu-
tions using the number of defects near the destination position
and near the start position separately are called ‘‘sd [s,d]’’.

The above-described approach to model the migration energy
is often referred to as cluster expansion in the literature.154–158

Similar to this work, groups are formed according to space
group symmetry of the crystal (asymmetric contributions for
the configurational energy) and the highest coherent point
group that maps the cluster onto itself (local cluster expansion).
Often, groups scale linearly and the possibility of categorical
scaling is neglected. Parameters are called effective cluster
interactions and are often determined by a fit of several ionic
configurations with several defects. Therefore, the scaling is
possibly not systematically verified and insights into the para-
meters may be limited.

3.3.2 Classification of models used in the literature. In the
literature, several models have been proposed to predict the
migration energies in doped ceria or the isomorphic yttria-
stabilized zirconia. Main differences are the interaction radii,
the centers of interactions and the number of chosen parameters.

Krishnamurthy et al.159 simulated the ionic conductivity in
yttria-stabilized zirconia using an interaction radius of only
1.91 Å. They calculated the three edge configurations (c1)
categorically: Zr–Zr, Zr–Y and Y–Y. The reduction of all possible
migration energies to three values might be a bad approxi-
mation though we did not investigate yttria-stabilized zirconia
in this work.

Meyer and Nicoloso132 included for fluorite-type oxides only
the RE–V interaction and neglected any V–V repulsion. Separate
models were created considering either trapping (sd [ds] with
an interaction radius of 2.34 Å) or blocking (c1 categorically,
where the migration edge configurations with one and two
dopants have the same migration energy E1

shell,c1 = E2
shell,c1). In

summary, trapping and blocking are only considered separately,
the c1 model is badly approximated and no V–V repulsion is
considered. Therefore, several effects are missing that are shown
in this work to be essential to understand the ionic conductivity.

Adler and Smith160 simulated the ionic conductivity in Y
doped ceria. For the RE–V and V–V interaction, a modified
Coulomb potential was used that contains an empirical scaling
term that adjusts the range of the interaction. The range
of interaction was varied between 1NN and infinity for RE–V
and V–V. The migration barrier that is added to this interaction
energy difference was assumed to be independent of the ionic
environment according to spin–lattice measurements.161 This
led to a sd [ds] model with an interaction radius between 2.71 Å
and infinity. While the linear scaling for sd [ds] is a good

approximation as confirmed in this work, the neglected cate-
gorical scaling of the c1 model leads to strong deviations
compared to calculated migration energies.

In publications from 2006,34,162 200944 and 2012,45 we chose
the c1 model categorically. In the analytical approach of 2006 as
well as in the publication from 2009, we additionally added the
RE–V interaction around the start position (c1 + s) using a
linear scaling with an interaction radius of 2.34 Å (2006) and
4.48 Å (2009). However, this model has two disadvantages: as
shown in this work, the destination position (d) is crucial to
model the migration energy. Furthermore, no V–V interactions
were considered. In 2012, we also considered the first V–V
interaction for Y and Sm doped ceria. The resulting c1 + s
model with an interaction radius of 2.71 Å allows a clear
separation of blocking and trapping effects. However, the model
quality is limited (see discussion in the next section) as only a
few parameters are used.

All configurations of the ‘6-cation environment’ (see Fig. 2)
were calculated by Murray38 and Oaks et al.153 using empirical
potentials for Y and La doped ceria, respectively, and by
Pornprasertsuk et al.163 using DFT for yttria-stabilized zirconia.
The latter was also investigated by Shimojo and Okazaki164 by
extracting the jump configurations of performed jumps from
molecular dynamics (MD) simulations. The resulting 30 para-
meter model (scd model without grouping and scaling) with an
interaction radius of 2.34 Å is an acceptable approximation for
the RE–V interaction of the migrating oxygen vacancy. However,
no V–V repulsion was considered leading to unphysical results
for high dopant fractions. In a later model, Pornprasertsuk
et al.165 increased the interaction radius to include 2NN RE–V
and V–V interactions using linear scaling.

A larger interaction radius was considered by Dholabhai
et al.145,166–168 for Pr, Gd and Sm doped and Gd–Pr co-doped
ceria. For the RE–V interactions, migration energies with a
single dopant up to a 3NN RE–V distance were calculated.
Though the exact formula for the model is not mentioned,
the created model could be similar to a c1 + c8 + c15 + sd [s,d]
model with linear scaling, where the 1st, 8th and 15th shells
around the center (c) counting both cation and anion sublattices are
included, and an interaction radius of 4.48 Å is used considering
only the cation sublattice. A first model without V–V interactions
and a second model prohibiting vacancies from being on the 1NN

V–V position were used. As the c1 model is not calculated
categorically and barely any V–V interactions are considered,
large deviations between model and actual migration energies at
high dopant fractions are expected.

Using a cluster expansion, Lee et al.156 fitted 100 randomly
chosen ionic configurations in yttria-stabilized zirconia with an
interaction radius that is 50% larger than the lattice parameter.
Though the model with 9 parameters has a good fit quality,
insights into the significance of the parameters are limited.

In an earlier presented work from 2014,46 we simulated the
ionic conductivity in Y doped ceria using a c1 + sd [ds] model
with categorical scaling for the c1 model and linear scaling for
the sd model and an interaction radius of 4.69 Å. The model
has a high quality as discussed in the next section. Deviations
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from this work are discussed in the Appendix: computational
details.

3.3.3 Quality of different models. In this section, an over-
view of the quality of different models is given using DFT
calculations. Firstly, we calculate cells containing the migrating
oxygen vacancy and either dopants or additional oxygen vacan-
cies. Secondly, cells that include simultaneous RE–V and V–V
interactions are calculated, where the jumping oxygen vacancy
interacts with both dopants and vacancies. The DFT calcula-
tions include dopants and oxygen vacancies with different
interaction distances and different concentrations. The quality
of different models is determined by fitting a model to several
migration energies obtained from DFT calculations. The quality
of the fit is evaluated using the adjusted coefficient of determi-
nation %R2 and the residual standard error sresidual. For a perfect
fit, %R2 should be 1 and sresidual should be 0.

In Fig. 15, 396 migration energies of exemplary169 jump
configurations containing the migrating oxygen vacancy
and either dopants or additional oxygen vacancies for Sm
doped ceria in a 3 � 3 � 3 supercell were fitted using different
models. For all models, the migration edge (c1) is considered
categorical. Defect distances up to 6.76 Å are included. %R2

and the residual standard error for different models show an
improvement for most models with increasing interaction
radius.

Clearly, models using only spheres around either the start
(s), the center (c) or the destination position (d) are not
sufficient to describe the migration energies of the 396 chosen
jump configurations (Fig. 15). Even a combination of spheres at
start and center (sc), which is similar to the approach of the
transition state theory, could only be used at large interaction
radii. However, a combination of spheres at destination and
center (cd) gives even better results at low interaction radii
than spheres at all three positions using the difference of
the number of defects between the start and the destination
position (scd [ds]). Obviously, for Sm doped ceria, influences

around the destination position are strong as seen by the
scaling of e.g. the 1NN 2 2NN and 2NN 2 4NN RE–V jumps.169

Therefore, a migration energy model should include inter-
actions of the migrating oxygen vacancy with defects around
its position in the initial, transition and final state.

Using the largest number of parameters, as in the scd [s,d]
model, and varying the interaction radius up to 6.76 Å not
always leads to the largest adjusted %R2 as the same regression
quality can be reached with a lower number of parameters. At
6.76 Å, the scd [s,d] model reaches the highest adjusted %R2 value
for all models of 0.9804 and a residual standard error of 0.029.
Here, 36 parameters are used. As the number of parameters is
very large, a reduction of parameters is desirable. Without
decreasing the quality of the model too much, the number of
parameters can be decreased to 10 parameters in the model
c1 + sd [ds] with an interaction radius of 5.41 Å and a resulting
residual standard error of 0.077 and %R2 = 0.86. Especially
influences near the jump center can be reduced and therefore
symmetric contributions neglected. As seen before, these are in
most cases small compared to the asymmetric contributions.169

A comparison between DFT and model energies for the model
c1 + sd [ds] (5.41 Å) is shown in Fig. 16. An interaction radius of
5.41 Å corresponds exactly to the length of the unit cell. This is
not surprising as the length of the unit cell correlates with the
translation symmetry in the solid.

Another verification of the model c1 + sd [ds] (5.41 Å) is
shown in Fig. 17 (left), where 244 migration energies of typical
jump configurations containing oxygen vacancies and Sm dopants
at typical experimental defect concentrations (Ce1�xSmxO2�x/2

with x = 0.05, 0.1 and 0.15) in a 3 � 3 � 3 supercell were fitted
using different models. Here, interactions between the cation
and anion sublattice are included in the DFT calculations. Again,
the c1 + sd [ds] model with an interaction radius of 5.41 Å
has still a good quality to describe the migration energies. The
adjusted %R2 = 0.80 (ss = 0.089) is slightly lower compared to the
separate investigation of the RE–V and V–V interactions as

Fig. 15 Quality of the fit of migration energy models to DFT migration energies measured by %R2 and standard deviation. The jumping oxygen vacancy
interacts with either dopants or vacancies, i.e. the DFT calculations do not include simultaneous RE–V and V–V interactions. An interaction radius of up to
6.76 Å is included. For all models, the c1 part of the model is categorical. Either the given interaction radius (e.g. for the c model) or selected shells (e.g. for
the c1 model) are used, where all shells around the start, destination and center positions are numbered consecutively counting both cation and anion
sublattices. Sm doped ceria in a 3 � 3 � 3 supercell.
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discussed earlier. This is caused by the interaction of the ions
and defects in the different sublattices and the larger defect
concentration. The decrease in %R2 is small, which indicates the
following: the interaction between both sublattices is small and
even migration energies at large defect concentration can be
fitted using the proposed model.

Finally, the parameters of the model c1 + sd [ds] (5.41 Å)
should be predicted rather than fitted to hundreds of config-
urations. The ability of the model c1 + sd [ds] to predict
migration energies using intuitive parameters is shown in
Fig. 17 (right). In this work, we chose intuitive parameters
using the above-discussed RE–V and V–V interaction energies
of the infinitely large supercell (Section 3.1) for the sd [ds] part
of the model, which is linearly scaled. The sd [ds] part of the
model (eqn (7)) can be visualized by a linear interpolation
between the energies of the initial and final state (cf. Fig. 13

for Emig,s,asymmetric = �Emig,d,asymmetric). As discussed above, the
terminations Eass(3NN RE–V) = 0 and Eass(5NN V–V) = 0 were used.
The RE–V energy parameters (see Fig. 18) are defined, for
example, according to Eshell,d,2 = �Eshell,s,2 = �0.5�(ERE–V,2 �
ERE–V,1) + Eshell,d,9 and Eshell,d,9 = �Eshell,s,9 = �0.5�(0 � ERE–V,2).
For the c1 part of the model, the Ce–Ce (Emig,pure), Ce–RE
(E1

shell,c1) and RE–RE (E2
shell,c1) migration edge energies of the

infinitely large supercell are used (Section 3.2).
In Fig. 17 (right), the standard deviation increases with

increasing dopant fractions. For the intuitive parameters,

Fig. 16 Model and DFT migration energies with fitted parameters. The
jumping oxygen vacancy interacts with either dopants or vacancies, i.e. the
DFT calculations do not include simultaneous RE–V and V–V interactions.
The model c1 + sd [ds] up to an interaction radius of 5.41 Å is used. Sm
doped ceria in a 3 � 3 � 3 supercell.

Fig. 17 Model and DFT migration energies with fitted and intuitive parameters. The jumping oxygen vacancy interacts with both dopants and vacancies.
The DFT calculations include simultaneous RE–V and V–V interactions. The model c1 + sd [ds] up to an interaction radius of 5.41 Å is used. Intuitive
parameters are chosen for the infinite supercell as discussed above with the terminations Eass(3NN RE–V) = 0 and Eass(5NN V–V) = 0. The line identifies
identical model and DFT results; the gray area shows an error of 0.1 eV. Sm doped ceria in a 3 � 3 � 3 supercell.

Fig. 18 Model migration energies (c1 + sd [ds], 5.41 Å) of the oxygen
vacancy migration near a RE dopant. Only the RE–V association between
one oxygen vacancy and one dopant is shown. Intuitive parameters are
based on the RE–V association energies ERE–V,1 and ERE–V,2 (Fig. 8) with
ERE–V,3 = 0. The energy parameter for the 9th shell Eshell,d,9 is directly given by
the association energy difference, Eshell,d,9 = �Eshell,s,9 = �0.5�(0 � ERE–V,2).
The energy parameter for the 2nd shell Eshell,s,2 also depends on the para-
meter of the 9th shell as the 2NN RE–V distance is still included in the
migration energy model. In this way, Eshell,s,9 cancels out and the migration
energy for a 1NN - 2NN RE–V jump only depends on ERE–V,2�ERE–V,1. Energies
are shown for Sm doped ceria in an infinitely large supercell.
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ss is 0.06, 0.09 and 0.11 for x = 0.05, 0.1 and 0.15, respectively.
Including all dopant fractions leads to a ss of 0.093. The
deviation from the regression of the fitted parameters is small.
Therefore, the chosen intuitive parameters are well suited for
experimental defect concentrations and are used for the Kinetic
Monte Carlo simulations in the next section.

In summary, we defined a general model for the migration
energy with a variable number of parameters. We calculated
640 migration energies using DFT calculations of exemplary
jump configurations. Subsequently, we fitted models with
different numbers of parameters to the calculated migration
energies. Firstly, we only investigated jump configurations
containing the migrating oxygen vacancy and either dopants
or additional oxygen vacancies. Subsequently, we chose a model
which fits well with the DFT migration energies and uses only a
small number of parameters. Secondly, calculations with both
oxygen vacancies and dopants at typical experimental defect
concentrations were investigated. Both cases fit well for the
selected migration energy model. As a result, our model based
on pair interactions can be used to describe the DFT migration
energies. Finally, we used the migration energies of only a few
jump configurations to predict the parameters of our model.
These parameters describe the DFT migration energies well.
Furthermore, their effect on the migration energy can be easily
understood and is intuitive.

4 Ionic conductivity
4.1 Simulation and experiments

Ionic conductivities for doped ceria with different rare-earth
dopants were calculated using Kinetic Monte Carlo (KMC)
simulations.170 For this purpose, a random cation distribution
was applied according to our earlier works (see Appendix: Kinetic
Monte Carlo).46,108 The migration energy model c1 + sd [ds]
(5.41 Å with categorical scaling for the migration edge, c1, and
linear scaling for the sd [ds] part of the model) was used for the
KMC simulations. The applied intuitive parameters are discussed
in the last paragraph. The used three migration edge energies are
shown in Fig. 11 and the used six interaction energies are shown
in Fig. 8 and 9. Changes in the migration energy compared
to pure ceria can be classified as symmetric (blocking) and
asymmetric contributions (trapping) as described in Section 3.3.

In Fig. 19, simulated ionic conductivities at 500 1C for Lu, Yb,
Y, Gd, Sm, Nd and La doped ceria are compared. A contour plot
of the data can be found in Fig. 20. The conductivity depends
strongly on the temperature as shown in Fig. S4 (ESI†) for 267 1C
and 600 1C. Here, 267 1C was chosen as a compromise between
good experimental impedance measurements of the bulk con-
ductivity at low temperature and short computation times
of KMC simulations at high temperature. Error bars show the
sample standard deviation ss of 10 simulations, which indicates
the expected range for the next simulation. The error for the
expected value of the conductivity is significantly smaller.

All calculated conductivities for ceria doped with different
rare-earth dopants show the typical increase and decrease in

ionic conductivity with increasing dopant fraction as found in
experiments. The dopant fraction leading to the maximum in
conductivity xmax and the slope of the curves vary for different
dopants. For most dopants, the characteristic maximum xmax is
around 0.1. An exception is Lu doped ceria due to its low
migration edge energies as we will discuss in the next section.

The KMC simulations (Fig. 19) predict conductivities smaller by
a factor of 0.3 than found in most experiments (Fig. 3). This may
be caused by an underestimated attempt frequency or over-
estimated migration energies in the simulation. Alternatively, the
separation of bulk and grain boundary conductivity in experiments
may not be adequate. For impedance spectroscopy experiments,
the bulk contributions often cannot be seen at 500 1C due to the
limited measured frequency range but are extrapolated from
measurements at lower temperature.

The highest conductivity in simulations is found for Sm
doped ceria. In the experimental literature, the bulk conductivity
was investigated only for a few dopant fractions. Therefore,
impedance measurements were performed for a concentration

Fig. 19 Ionic conductivity of rare-earth doped ceria as a function
of doping fraction. KMC simulations were performed at 500 1C with
RE = Lu, Yb, Y, Gd, Sm, Nd and La. Lines are a guide to the eye only.

Fig. 20 Contour plot of the ionic conductivity of rare-earth doped ceria
as a function of doping fraction. KMC simulations were performed at
500 1C with RE = Lu, Yb, Y, Gd, Sm, Nd and La.
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series of Sm doped ceria in this work. Fig. 21 shows the
simulated and experimental ionic conductivity of Sm doped
ceria according to this work at 267 1C (for experimental details
see Appendix: experimental details). A similar curve progres-
sion in simulations and experiments is found. Exceptions
are found at small dopant fractions, where in the experiments
impurities with high association energies influence the
conductivity.108 For example, Fig. 21 shows the simulated ionic
conductivity for Ce0.9999Sc0.0001O1.99995, which is significantly
lower than the conductivities in Sm doped ceria and similar to
the experimental conductivity of nominal pure ceria. We will
present a detailed investigation of the effect of impurities on
the ionic conductivity in our upcoming paper.171 The highest
bulk conductivity is found for Ce0.93Sm0.07O1.965 in experiments
and for Ce0.94Sm0.06O1.97 in simulations.

For different dopants, the ranking order for the highest
conductivity is similar in simulations (Fig. 19) and experiments
(Fig. 3) at different dopant fractions, despite the strong scattering
in experiments: for low dopant fractions, Nd doped ceria often
shows higher conductivities than Gd doped ceria. For large
dopant fractions, this ranking order is reversed. Y doped ceria
often shows lower conductivities than both dopants up to x = 0.2.
Besides Gd and Nd doped ceria, Sm doped ceria possesses a large
ionic conductivity. Dopants with smaller and larger ionic radii
lead to lower maximal ionic conductivities. In the next section, a
detailed comparison for x = 0.1 and 0.2 is performed.

The dopant fraction leading to the maximum in conductivity
xmax for the simulation (Fig. 19) is in agreement with experi-
ments (Table 1). Large dopants like Nd and La lead to small
xmax in simulations and experiments.86 Compared to previous
KMC simulations in the literature, which predict too high xmax

values, a better agreement with experiments is found in this work.
For example, Dholabhai et al. predict at 500 1C a maximum for
Ce0.8Sm0.2O1.9 and at 400 1C a maximum for Ce0.8Gd0.2O1.9.145,168

In our work from 2012, we predicted at 620 1C a maximum for

Ce0.85Y0.15O1.925.45 In our work from 2014, a maximum for
Ce0.86Y0.14O1.93 at 527 1C was predicted.46 In both this work
and experiments (Table 1) the dopant fractions leading to the
maximum in conductivity are smaller. As a result, we predicted
the ionic conductivity of rare-earth doped ceria better
than previous KMC simulations that use energies from DFT
calculations due to the improved migration energy model with
improved parameters.

For 600 1C (Fig. S4, ESI†), all conductivities increase by a
factor of about 2.5–4 compared to 500 1C (see also Inaba and
Tagawa)29 due to the Boltzmann probability. The increase in
conductivity is higher for higher dopant fractions since the
influence of blocking and trapping decreases with temperature.
Though the (randomly ordered) cation configuration is inde-
pendent of temperature, the number of jump attempts through
Ce–Ce edges increases because the larger thermal energy
increases the probability for oxygen vacancies to leave the
association radius of the dopant ions (trapping). Furthermore,
the probability of jumps through doped migration edges, which
have a larger migration energy (blocking), is increased.46 As a
result, the maximum of the simulated ionic conductivity is
shifted to larger dopant fractions, which is in agreement with
experimental data (see Table 1 and Fig. S1, ESI†). Especially Y
and Gd, which possess strong trapping, lead to high ionic
conductivities at higher dopant fractions. At low temperature,
the effects reverse and the dopant fractions leading to the
maximum in conductivity decrease.

4.2 Volcano plots of the conductivity at x = 0.1 and 0.2

Similar to the literature, the ionic conductivity for a single dopant
fraction can be investigated. Though often the total conductivity is
presented in the literature, only the bulk conductivity represents
the inherent property of the doped material largely without the
influence of the microstructure of the sample. The bulk conduc-
tivity in experiments at 400 1C for x = 0.1 and 0.2 was summarized
in Fig. 4 and is again shown in Fig. 22 (top).

For comparison, simulated ionic conductivities are shown in
Fig. 22 (bottom). Here, the ionic conductivity increases with
increasing dopant radius up to Sm and decreases with increas-
ing dopant radius for larger dopants. For x = 0.1 and 0.2, Sm is
the optimal dopant with the highest conductivity as already
shown in Fig. 19 and Fig. S4 (ESI†). The bulk conductivity in
experiments is about a factor 2–4 (x = 0.1) or 2–6 (x = 0.2) larger
than the simulated conductivity. An exception is Nd doped ceria,
whose experimental values scatter over more than an order of
magnitude. The ranking order between different dopants is similar
in experiments and simulation.

In Fig. 22, a linear relationship between the ionic radius and
the conductivity (solid lines) or the logarithm of the conductivity
(dashed lines) is shown. If the conductivity depends linearly on
the ionic radius, a relation between lattice distortions and the
ionic conductivity can be assumed. If the logarithm of the
conductivity depends linearly on the ionic radius, the ionic
conductivity is dominated by the apparent activation enthalpy

(according to si ¼
A

T
e
�DHa
kBT ), which is strongly influenced by the

Fig. 21 Comparison of simulated and experimental ionic conductivity as a
function of doping fraction. Sm doped ceria was investigated at 267 1C.
Bulk ionic conductivities according to our impedance experiments are shown.
Additionally, the simulated ionic conductivity of Ce0.9999Sc0.0001O1.99995

is shown. Lines are a guide to the eye only.
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ionic radius of the dopant. In fact, both relations were already
reported in the literature as discussed in Section 2.5: first
theories postulated that the highest oxygen ion conductivity
occurs for dopants which result in the least distortion of
the crystal lattice.1,28,30,31,84,133–136 Additionally, a relation
between the activation enthalpy and the ionic conductivity was
investigated.84,86,87,102,146

The results in this work and literature suggest a linear
relationship between ionic radius and conductivity in contrast
to earlier literature as shown by the better regression result
in Fig. 22.

4.3 Trapping and blocking

The ascending slope of s(x) as a function of the dopant fraction
(Fig. 19) is small for small dopants (e.g. Lu, Yb and Y) and
large for large dopants (e.g. La), obviously curve progression
and ionic radius are related. This is not surprising, since
the association energies (Section 3.1) and migration energies
from density functional theory (DFT) calculations (Section 3.2),
which were used in the KMC simulations, are related to the
dopant radius. For further investigations, the input parameters
and output values of the KMC simulations are categorized
and compared.

Trapping and blocking are used to describe the experi-
mental ionic conductivity as discussed in Section 2.4 and in
theoretical studies.44–46 Trapping describes the influence of the
association between dopant ions and oxygen vacancies on the
migration energy. Migration barriers for jumps of the migrating
oxygen vacancy away from the associating dopant are higher
than in pure ceria, while jumps to the dopant are more favored.

Vacancies appear more often in the nearest neighborhood to
the defect because they are trapped. Blocking describes energy
contributions that increase the migration energy for both the
forward jump and the backward jump. Oxygen vacancies are
kinetically hindered and therefore blocked. The trapping
decreases for larger ionic radii (Fig. 8) while the blocking effect
increases (Fig. 11).

To investigate the influence of blocking, trapping and the
V–V interaction on the ionic conductivity, several simulations
were performed. In these simulations, increased symmetric
migration barriers due to dopants around the jump center
(blocking) or association energy contributions due to the
RE–V association (trapping) or V–V repulsion were neglected
(Fig. S5, ESI†). For Sm doped ceria, it was found that with no
V–V repulsion a strong association of dopants and vacancies
takes place and the conductivity decreases. Therefore, the V–V
repulsion increases the conductivity. Blocking and trapping
both decrease the conductivity.

While these observations were made for Sm doped ceria,
similar effects might be found for other rare-earth dopants. The
V–V repulsion energies are independent of the dopant. There-
fore, the investigation of blocking and trapping is the main goal
of this work as they are the only factors that distinguish the
conductivity of different rare-earth dopants. Both effects are
essential for the understanding of the underlying mechanism
that determines the magnitude of the oxygen ion conductivity
and the optimal dopant concentration.

Therefore, KMC simulations at 500 1C were performed for
different rare-earth dopants with all (Fig. 23a) or only selected
interactions (Fig. 23). Either trapping (Fig. 23b) or blocking
(Fig. 23c) was neglected. For the no-trapping case, the blocking
effect can also be dopant-dependent only for the Ce–RE edge by
setting the RE–RE edge energy for all dopants to the largest
calculated value of 1.29 eV. In this case, dopants differ only by
the Ce–RE edge energy (Fig. 23d). For the no-blocking case, the
trapping effects can also be restricted to a 1NN RE–V interaction
range by terminating at the 2NN RE–V interaction. In this case,
dopants differ only by the asymmetric energy contribution to
the 1NN 2 2NN RE–V jump (Fig. 23e).

KMC simulations with (Fig. 23a) and without trapping (Fig. 23b)
show the same ranking order of xmax between different rare-earth
doped ceria. For Gd doped ceria, no change in xmax is found.
Small dopants have lower xmax and large dopants have higher xmax

if the trapping is included with a difference up to Dxmax = �0.04.
If, in addition to the trapping, the blocking effect is also modified
and dopants differ only by the Ce–RE edge energy (Fig. 23d),
hardly any change in the conductivity is found. An exception is
Yb doped ceria, which has an exceptionally high Ce–RE edge
energy that is similar to the Ce–Gd edge energy (Fig. 11),
probably caused by the chosen PAW–GGA–PBE potential.
A comparison between the Ce–RE edge energy and the dopant
fraction of the maximum in conductivity is shown in Fig. 24
(left). The dopant fraction of the maximum decreases with larger
blocking: for higher dopant fractions, the fraction of jump
configurations influenced by blocking increases. Larger blocking
leads to lower conductivities and, therefore, with larger blocking

Fig. 22 Ionic conductivity of Ce1�xRExO2�x/2 at 400 1C for x = 0.1 and 0.2
according to experiments (top, cf. Fig. 4) and simulations (bottom).
Experimental data from references a,83 b,82 c,85 d,67 e,61 f,106 g,92 h,95 i,96

k,74 l,73 m,100 n101 and o87 are shown. The lines show a linear relationship
between the ionic radius and the conductivity (solid lines) or the logarithm
of the conductivity (dashed lines).
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Fig. 23 Simulated ionic conductivity of rare-earth doped ceria at 500 1C without considering RE–V interactions around the start and destination
position (left) or without considering different migration edges (right). Lines are a guide to the eye only.
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the maximum appears at lower dopant fractions. Hence, xmax is
determined by the Ce–RE edge energy.

However, the number of jumps through doped edges does
not change much for larger dopant and vacancy fractions. In
KMC simulations of an earlier work at 700 K, between x = 0.02
and 0.14 the relative number of jumps through Ce–Y edges
increases only about 4% (35% to 39%).46 Jumps through Y–Y
edges are rare (0.04% to 0.14%). Significantly higher are the
number of jump attempts, which are not weighted by the

Boltzmann probability p ¼ e
�
DEmig

kBT (cf. Appendix: Kinetic Monte
Carlo), with 45% to 54% (Ce–Y) and 2% to 11% (Y–Y). The large
migration energy of doped edges decreases the number of
performed jumps and therefore the ionic conductivity.

The ionic conductivity of the no-trapping case using only
different Ce–RE edge energies is high compared to KMC simula-
tions with trapping. The ranking order of the conductivities at all
dopant fractions is equivalent to the ranking order of the Ce–RE
edge energies. The ionic conductivity decreases with increasing
Ce–RE migration edge energy or rather increasing dopant radius
with the above-discussed exception of Yb doped ceria. Therefore,
we can summarize: blocking mainly limits the dopant fraction
of the maximum. Here, the Ce–RE edge energy is decisive.

KMC simulations at 500 1C with (Fig. 23a) and without
blocking (Fig. 23c) show nearly the same ranking order of
conductivities at all dopant fractions. If the trapping effect is
also restricted and dopants differ only by the asymmetric
contribution to the 1NN 2 2NN RE–V jump (Fig. 23e), the
ranking order of conductivities changes significantly and is
equivalent to the ranking order of the absolute value of the
|2NN–1NN| RE–V association energy differences (Fig. 8). A comparison
between association energy differences and ionic conductivity of
the maximum is shown in Fig. 24 (right). The ionic conductivity
decreases with increasing absolute value of the |2NN–1NN| RE–V
association energy difference or rather increasing dopant
radius. Sm and La doped ceria have similar conductivities
though in Sm doped ceria the 1NN RE–V association and in La
doped ceria the 2NN RE–V association are favored. Large |2NN–1NN|
RE–V association energy differences lead to steep slopes. If again

the full trapping effect is considered and therefore 2NN - 3NN,
2NN - 4NN and 4NN - 4NN RE–V jumps have different migration
energies, the conductivities decrease with increasing 2NN RE–V
association energy or rather |3NN–2NN| RE–V association energy
difference. The decrease occurs especially at large dopant
fractions if the |2NN–1NN| RE–V association energy difference is
small. The decrease occurs especially at small dopant fractions if
the |2NN–1NN| RE–V association energy difference is large. In other
words, if the conductivity in Fig. 23e is high, the conductivity in
Fig. 23c is smaller, especially at large dopant fractions. For
intermediate 2NN RE–V association energies, even an increase in
conductivity at large dopant fractions can be found. This results in
crossings in the ranking order of conductivities. Hence, the
ranking order of conductivities is determined by the |2NN–1NN|
and |3NN–2NN| RE–V association energy differences.

The dopant fraction leading to the maximum in conductivity
is similar for different dopants if only the |2NN–1NN| RE–V
association energy differences are considered (Fig. 24 left). An
exception is Lu doped ceria due to strong trapping. But,
including the |3NN–2NN| RE–V association energy differences
increases xmax for large 2NN–1NN RE–V association energy differ-
ences and decreases xmax for negligible or negative 2NN–1NN

RE–V association energy differences compared to the previous
case. Here, Sm and La doped ceria show different behavior.
This is shown in Fig. 24 (left). Surprisingly, the change in xmax is
independent of the 3NN–2NN RE–V association energy difference.
We conclude: the dopant fraction leading to the maximum in
conductivity is only directly controlled by the formation of RE–V
associates if vacancies are already slowed down in the vicinity of
the dopant due to the 2NN association energy.

Though the resulting ranking order of xmax between different
rare-earth doped ceria for the no-blocking case is similar to the
KMC simulations with all interactions, the values of xmax are too
large. Fig. 24 (left) shows the dopant fraction of the maximum if
only blocking is considered. Large 2NN–1NN RE–V association
energy differences increase and small 2NN–1NN RE–V association
energy differences decrease xmax. In summary, the dopant frac-
tion leading to the maximum in conductivity is influenced
by both trapping and blocking, but dominated by blocking.

Fig. 24 Relationship between blocking and trapping and the simulated ionic conductivity for different dopants at 500 1C. A comparison between the
Ce–RE migration edge energy (blocking) and the dopant fraction of the maximum (left) or the RE–V association energy difference (trapping) and the ionic
conductivity of the maximum (right) is shown. For comparison, interactions are switched off individually. Lines are a guide to the eye only.
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We conclude: trapping mainly limits the maximum ionic conduc-
tivity value. Here, the association energy differences are decisive.

In summary, both trapping and blocking decrease the con-
ductivity. However, to reproduce the correct ranking order of
conductivities it is necessary to include trapping. The dopant
fraction of the maximum xmax is limited by blocking. In the
literature, the common assumption is made that association
between oxygen vacancies and dopants causes the maximum in
oxygen ion conductivity (Section 2.4). On the one hand, the result
of this work indeed shows that trapping creates the ranking
order of conductivities between different dopants and even has
an influence on xmax. On the other hand, this work shows that
the dopant fraction leading to the maximum in conductivity is
limited by blocking. The optimal dopant fraction or optimal
doping concentration cannot be predicted based on trapping
alone. This defies the assumption in the literature and, there-
fore, blocking is strongly underrated in the literature.

The highest conductivity can be found if the absolute values
of the association energy differences are small. The 2NN 2 1NN

RE–V association leads to the formation of associates (either at
1NN or at 2NN). As a result, vacancies are held by the dopants as
their movement is hindered. The long-range 3NN - 2NN RE–V
association pulls vacancies into the vicinity of dopants. Both
need to be small for a large ionic conductivity.

In summary, not only a low tendency for associate formation but
also a low pull of vacancies into the vicinity of dopants is important
for a large ionic conductivity. For this purpose, the 2NN 2 1NN

associate formation can be described as a hold of the vacancy and
the 3NN - 2NN RE–V association as a catch of the vacancy, resulting
in the term ‘catch-and-hold principle’. The catch-and-hold principle
explains why Sm doped ceria with medium trapping energies
has the largest maximum ionic conductivity.

4.4 Activation enthalpy

Macroscopic apparent activation enthalpies DH deducted from
the KMC simulations between 500 1C and 600 1C in steps of

25 1C were calculated (Fig. 25) similar to experimental data

according to s ¼ A

T
e
�DHa
kBT (see Appendix: theoretical details).

It should be noted that the input parameters for the KMC
simulations like the migration energy model are independent
of dopant fraction and temperature. No reduction of ceria was
taken into account.

As shown in Fig. 25, the simulated apparent activation
enthalpies at low dopant fractions are equal to the migration
energy in pure ceria of about 0.47 eV for all dopants. Each
activation enthalpy increases with increasing dopant fraction.
This is caused by the interactions between defects that increase the
migration energies. Contrary to some literature results,74,84,86,100

no minimum in the activation enthalpy can be found at low
dopant fractions. Impurities with high association energies or
reduction dominated conductivities can explain the higher
apparent activation enthalpies in experiments at low dopant
fractions as discussed in an earlier publication.108 We will
present a detailed investigation of the phenomenon of the
minimum in the apparent activation enthalpy in our upcoming
paper.171 We conclude: no minimum in the apparent activation
enthalpy is necessary to reproduce the maximum in the ionic
conductivity as a function of dopant fraction. Our simulations
reproduce the maximum in the ionic conductivity (cf. eqn (8) in
Appendix: theoretical details) using increasing apparent activa-
tion enthalpies with increasing dopant fraction (Fig. 25), an
increasing charge carrier concentration with increasing dopant
fraction and approximately constant apparent experimental
attempt frequencies (Fig. 26).

Activation enthalpies in simulations are smaller than in
experiments. A non-sufficient separation of bulk and grain
boundary conductivity in experiments may lead to overall higher
activation enthalpies. In simulations, large and small dopants
have high activation enthalpies. Medium sized dopants that
lead to high conductivities have low activation enthalpies
(Sm and Nd). Similarly, the ranking of dopants at a specific

Fig. 25 Activation enthalpy from KMC simulation in this work (lines) and experiments between room temperature and 330 1C (dashed lines)86 or higher
temperatures up to 1000 1C (dashes) for Lu,82,83 Yb,83 Er,83 Y,83–85,87,88,98 Dy,67,83 Gd,61,83,85,87,88,91,92,94 Eu,96 Sm,72,83,88,98,107 Nd74,83,88,100,101

and La doped ceria.87
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concentration correlates in conductivity and activation
enthalpy, e.g. high conductivities are found for low activation
enthalpies. Both effects were already found in experiments (see
Section 2.3) and are expected since the activation enthalpy
dominates the conductivity according to eqn (8) and (9). The
ranking order between different dopants is similar in simula-
tions and experiments; even the crossing between the activa-
tion enthalpies of La and Gd doped ceria at low dopant
fractions is found in simulations similar to the work of Faber
et al. (dashed lines in Fig. 25).86 Exceptions are low activation
enthalpies in simulations for Nd doped ceria at all dopant
fractions and high activation enthalpies in simulations for La
doped ceria at high dopant fractions. However, for the former,
the experimental ionic conductivity strongly scatters between
different groups and, for the latter, only a few activation enthalpies
are reported.

Similar to the conductivity, the activation enthalpy can be
calculated for KMC simulations with all or only selected
interactions.169 Either trapping or blocking was neglected. Both
influence the final activation enthalpy. Again, the no-trapping case
and the only different Ce–RE edges case are similar. Here, the
activation enthalpy increases with increasing Ce–RE edge energy and
increasing dopant fraction. Again, the no-blocking and the only
different 1NN 2 2NN RE–V jump case differ. Here, the activation
enthalpy increases with increasing |2NN–1NN| and 3NN–2NN RE–V
association energy differences and increasing dopant fraction.
Again, the increase occurs especially at large dopant fractions if
the |2NN–1NN| RE–V association energy difference is small (e.g. for Nd
doped ceria). We conclude that, similar to the maximum ionic
conductivity, the activation enthalpy is dominated by trapping.

Macroscopic activation enthalpies for the KMC simulations
can also be calculated for lower temperatures, e.g. between
267 1C and 500 1C. A shift to mostly higher activation enthalpies
can be found. This is expected since less thermal energy is
available for successful jumps with high migration barriers.
Here, the high migration energies strongly influence the activa-
tion enthalpy. This has already been shown in an earlier
publication108 using a simple migration energy model.

The difference in activation enthalpy for the low temperature
region (between 267 1C and 500 1C) and the high temperature
region (between 500 1C and 600 1C) can be used to calculate an
‘apparent association energy’ as proposed in experiments (see
Section 2.3), especially similar to Omar et al.83 The resulting
apparent association energies are small (o0.03 eV). This is in
agreement with the discussed experimental literature, which
reports no distinct kink or no kink in the Arrhenius behavior
of the conductivity.83 Distinct kinks as reported in experiments
by Zhan et al.72 and Zhang et al.85 (Fig. 5) can be found in KMC
simulations for higher temperatures as shown in Fig. 27 with
apparent association energies up to 0.08 eV. In summary, our
simulations confirm that the apparent activation enthalpy is
influenced by the RE–V association energy. However, the RE–V
association energy cannot be extrapolated from experiment,
for example due to its dependence on the dopant fraction, as
already discussed in Section 2.

5 Conclusions

In this work, the ionic conductivity in the bulk of doped ceria
was investigated using theoretical calculations, namely density
functional theory (DFT) calculations and Kinetic Monte Carlo
(KMC) simulations, and experiments. For a detailed under-
standing of the underlying mechanism that determines the
magnitude of the oxygen ion conductivity and the optimal
dopant concentration, the influence of microscopic defect inter-
actions on the macroscopic conductivity was shown. Migration
barriers were investigated for energy contributions that are
symmetric and asymmetric for forward and backward jumps,
which are referred to as blocking and trapping. We defined a
general model for the migration energy with a variable number
of parameters and chose a model which fits well with the DFT
migration energies and uses only a small number of parameters.
Subsequently, we used the migration energies of only a few
jump configurations to predict the parameters of our model.
Our main conclusions are

Fig. 26 Apparent attempt frequency for the simulated conductivity of
rare-earth doped ceria at 500 1C. Lines are a guide to the eye only.

Fig. 27 Ionic conductivity of Ce1�xRExO2�x/2 as a function of temperature.
KMC simulations were performed for Sm and Gd doped ceria. A low and a
high temperature region can be found with different activation enthalpies.
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� The ionic conductivity is influenced by trapping, blocking
and vacancy–vacancy interactions.
� Blocking mainly limits the dopant fraction at the ionic

conductivity maximum. Here, the migration edge with one
dopant is decisive. This blocking effect is strongly underrated
in the literature.
� Trapping mainly limits the maximum ionic conductivity

value. Here, the association energy differences are decisive.
� Similar to the maximum ionic conductivity, the apparent

activation enthalpy is predominantly influenced by trapping.
� No minimum in the apparent activation enthalpy is

necessary to reproduce the maximum in the ionic conductivity
as a function of dopant fraction.
� The highest conductivity can be found if all absolute values

of the association energy differences are small. The 2NN 2 1NN

RE–V association leads to the formation of associates, i.e. vacan-
cies are held by the dopants as their movement is hindered. The
long-range 3NN 2 2NN RE–V association catches vacancies into
the vicinity of dopants. Both catch-and-hold need to be small for
a large ionic conductivity. The catch-and-hold principle easily
predicts the dopant that leads to the highest ionic conductivity.

In this work, we predicted the ionic conductivity of rare-earth
doped ceria better than previous KMC simulations using energies
from DFT calculations. For comparison, impedance measure-
ments of Sm doped ceria were performed. The experiments agree
well with the data predicted by theoretical methods.

Ionic conductivity maxima can be found in a variety of
materials including fluorite-structured, perovskite-structured
and apatite-type oxides. We believe that trapping, blocking and
vacancy–vacancy interactions influence the ionic conductivity in
many of these materials. Blocking effects, for example, are caused
by doping at the migration edge in fluorite-structured oxides
like ceria, while in perovskite-structured oxides like LaGaO3 or
Ba0.5Sr0.5Co0.8Fe0.2O3�d a migration triangle136,172,173 can be
found. Therefore, the detailed results and insights obtained
here for doped ceria can be generalized and applied to other
ion conductors that are important for SOFCs and SOECs,
resistive switching materials224 as well as solid state batteries.

Conflicts of interest

There are no conflicts to declare.

Appendix
Theoretical details

The ionic conductivity si of the oxygen ions (i = O2�) or vacancies
i ¼ V��O
� �

is proportional to their squared charge zi
2e2, concen-

tration ni and mechanical mobility bi (eqn (8)). For non-
interacting defects, the mobility is related to the diffusion
coefficient Di by the classical Einstein relation with the Boltz-
mann constant kB and the absolute temperature T. Though
this approximation fails for most doped materials, it is often
used to analyze experimental results. Both diffusion coeffi-

cients (DO2� and DV��
O

) depend on the weighted mean jump rate

of all oxygen ions ( �GO2�) or vacancies (�GV��
O

) to one nearest

neighbor site. In this work, jumps to other lattice sites are
neglected according to Nakayama and Martin.44 In eqn (8), l is
the jump distance and g is the geometrical factor, which
includes the number of jump sites np and the dimension of

diffusion d and is g ¼ np

2d
¼ 1 in a primitive cubic lattice, e.g. the

oxygen sublattice in ceria.174,175 The jump rate can be described
by an Arrhenius equation (eqn (9)) with the apparent activation
enthalpy DHa. The apparent activation enthalpy describes the
experimentally determined dependence of the diffusion coeffi-
cient on temperature and can be calculated from the slope of
the plot ln �Gi versus 1/T.

si ¼ ni � zi2e2 � bi; where bi ¼
Di

kBT
and Di ¼ gl2 � �Gi: (8)

�Gi ¼ �nexp;i � e
�DHa
kBT (9)

Therefore, the pre-exponential factor for diffusion D0,i = gl2��nexp,i

depends on the mean experimental attempt frequency �nexp,i, which
was already discussed in detail in our earlier publication.108

Naturally, deviations in the activation enthalpy, which appears
in the exponential term, possess a stronger influence on the
jump rate than deviations in the attempt frequency.

As a result, the activation enthalpy can be extracted from the
conductivity according to

si ¼
A

T
e
�DHa
kBT (10)

with the parameter A. In doped ceria, a variety of ionic config-
urations occur, which lead to a variety of jump environments
and possibly different local attempt frequencies. The extracted
activation enthalpy DHa is therefore a macroscopic property
influenced by all jumps.

Computational details

Quantum mechanical calculations were performed using the
Vienna Ab initio Simulation Package (VASP)176,177 calculating
geometric parameters and energies at zero temperature. All
ab initio calculations were carried out within the scope of
the density functional theory (DFT) using the Generalized
Gradient Approximation (GGA) according to Perdew, Burke
and Ernzerhof (PBE)178 and the projector augmented-wave
method (PAW).179 Alternative methods like Local Density
Approximation (LDA) and hybrid functionals (e.g. Heyd–Scuseria–
Ernzerhof, HSE) have been investigated in the literature.180

Hafner discusses the advantages of the different exchange–
correlation-functionals.181

For plane waves, an energy cut-off of 500 eV was chosen.
Supercells consisting of between 8 unit cells (a multiplication
of 2 � 2 � 2 unit cells in each dimension) and 64 unit cells
(4 � 4 � 4) were employed. Monkhorst–Pack k-point meshes
between 2 � 2 � 2 for the 2 � 2 � 2 supercell and 1 � 1 � 1 for
the 3 � 3 � 3 supercell or larger supercells were investigated.

The 5s25p66s25d14f1 electrons of the cerium atoms were treated
as valence electrons. Similarly, the 5s25p66s25d1 electrons of the
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lanthanum, neodymium and samarium atoms, the 5p66s25d1

electrons of the gadolinium, erbium, thulium and lutetium atoms,
the 5p66s2 electrons of the ytterbium atoms, the 3s23p63d14s2

electrons of the scandium atoms, the 4s24p64d15s2 electrons
of the yttrium atoms, the 3p63d54s2 electrons of the manganese
atoms and the 2s22p4 electrons of the oxygen atoms were
treated as valence electrons.

To account for the localization of strongly correlated
f-electrons, a Hubbard U parameter was introduced by the
rotational invariant approach.182 A repulsion parameter of
U = 5 eV for the 4f-orbitals of cerium was chosen according to
earlier studies42,130,145,147,148,183–186 though other values have
also been proposed.180,187–192

The total number of electrons in the cell was adapted for all
defective cells to reproduce the actual charge state of the
defects according to eqn (1), e.g. (Ce108O215)2+ for a 3 � 3 � 3
supercell containing one oxygen vacancy. Though charge-
neutral cells containing defects according to eqn (1) without
adjustment of the number of electrons would be preferable, in
this work interactions between defects shall be limited. Therefore,
charge-neutral cells with large distances between defects are
virtually divided into oppositely charged cells. Charged cells are
calculated by VASP assuming a neutralizing background charge,
which is a valid approach as shown in the literature.193–196

The convergence parameters for electronic and ionic relaxa-
tion were set to at least 10�5 eV and 10�2 eV Å�1, respectively, to
guarantee a sufficient accuracy of the calculated forces.

A lattice constant of 5.49 Å was calculated for defect-free
ceria using the Birch–Murnaghan equation of state, which
is larger than the experimental lattice parameter due to the
chosen set of parameters,197–199 and applied for all calculations
as performed in the literature.53,54,200 For all calculations, the
internal atomic positions in the cell were relaxed (changed to
minimize the energy of the cell) without changing the lattice
parameter.

The interaction energy (association or repulsion energy) is
the energy which is required to move two defects from an
infinite distance towards adjacent lattice sites. Possible defects
are oxygen vacancies (V��O abbreviated as V) and dopant cations

(RE
0
Ce abbreviated as RE). Possible distances between defects are

numbered consecutively with 1NN being the nearest neighbor
position and 2NN the next nearest neighbor position. As an
infinitely large defect distance in an infinitely large supercell
cannot be calculated,8 interaction energies are approximated as
the difference to the largest calculated defect distance. The right
choice of the largest calculated defect distance, which is in the
following referred to as termination, is discussed in this work.
In an earlier publication,46 interaction energies including up to
2NN RE–V and 3NN V–V (cut-off radius 4.7 Å)46 were used, while
in this work 2NN RE–V and 4NN V–V (cut-off radius 5.5 Å) are
used as discussed in Section 3.1.

The nudged elastic band method (NEB)201–203 was applied
to investigate the transition states and the minimum energy

pathways. The ionic configuration for the saddle point configu-
ration (‘image’) was interpolated from the initial and final state
of the migration process. During the NEB calculations, the
atom positions of the interpolated image are relaxed whereat an
artificially introduced spring force (�5 eV Å�1) counteracts
the deviation of atom positions compared to adjacent images
(here: initial and final state).

Tests with more than one intermediate image between the
initial and final configuration of the migration showed no
differences in the migration energies. The same is true for tests
using the climbing image nudged elastic band method (CI-NEB).204

For the latter, deviations in the lattice geometry of only �0.0001 Å
were found. Selected jump configurations were also success-
fully compared with the improved dimer method.205,206 Only
doping with several Sc dopants causes severe problems during
the NEB calculation due to the small ionic radius of Sc, which
leads to large lattice distortions leading to very low solubility
of Sc in ceria.

Association and migration energies strongly depend on the
finite supercell size due to the interactions of the defects with
their image in other cells. Therefore, in the literature, generally
large supercell sizes are recommended. Alternatively, Freysoldt
et al. propose a method based on the local electrostatic
potential given by VASP to correct electrostatic finite size errors.
In this work, the Freysoldt method did not lead to the desired
result due to the extended defect clusters.207

Makov and Payne formulated an analytic expression to
correct the electrostatic energy created by periodic boundary
conditions in calculations.208 The energy of an isolated defect
Eisolated is given by the calculated energy Efinite by

Eisolated ¼ Efinite þ
a � q2
2eL

þ 2p � qQ
3eL3

þO L�5
� �

(11)

with the Madelung constant a depending on the type of lattice
structure, the charge q and the quadrupole moment of the

defect Q, the linear dimension of the supercell L / V
1
3 propor-

tional to the third root of the volume of the supercell V,
dielectric constant e and unspecified function O depending
on L�5, which may be neglected for larger supercell sizes.

As both interaction and migration energies depend only on
differences between two cells, the monopole interaction (L�1) is
neglected. In this work, the dipole interaction (L�3) is corrected.
Therefore, different supercell sizes are fitted as a function of
volume. Eqn (11) is only valid for cubic supercells. Non-cubic
supercells, which were still used in an earlier work from the
year 2014,46 lead to major deviations.

Compared to earlier works from 200944 and 2014,46 three
major changes to the calculation of the interaction energy were
made: termination and finite size correction.

Firstly, the interaction energy strongly depends on the
supercell sizes. As a result, the interaction energy was extra-
polated to an infinitely large supercell to avoid any size depen-
dencies using finite size correction. While we used a 2 � 2 � 2
supercell in 2009,44 we extrapolated to an infinitely large super-
cell in the work from 201446 and in this work. It should be

8 Actually, cells with isolated defects can be used. However, earlier
investigations44,46 show that this method may introduce major errors.

PCCP Perspective



14316 | Phys. Chem. Chem. Phys., 2018, 20, 14291--14321 This journal is© the Owner Societies 2018

noted that the extrapolations in the work from 2014 and this
work are different: in this work, the extrapolation was per-
formed using cubic supercells (2 � 2 � 2 and 3 � 3 � 3), while
for the work from 2014 non-cubic supercells were also used,
which is not ideal.

Secondly, the interaction energy is defined as the energy that
is required to move two defects from an infinite distance
towards adjacent lattice sites. On the one hand, infinite dis-
tances necessary for the so-called ‘infinite termination’ are
difficult to calculate. On the other hand, interaction energies
are usually only calculated for a selected defect distance. Any
further interactions are assumed to be zero. Therefore, it seems
obvious to use the first interaction, which is assumed to be zero
(e.g. at 6 Å RE–V distance), directly as a reference for ‘termina-
tion at the first neglected interaction’.

To compare both types of termination, it may be assumed that
the interaction energy is identical to a fictive Coulomb energy
according to eqn (2). Adjacent defects, nearby defects and widely
separated defects are distinguished. While an adjacent defect is
on a nearest neighbourhood site (1NN) or in close vicinity up to
iNN, nearby defects are just outside of the considered interaction
radius on (i + 1)NN. Here, for infinite termination, the energy
difference between ionic configurations with adjacent defects
and widely separated defects is well defined. However, the energy
difference of nearby defects compared to adjacent defects just
outside of the considered interaction radius is too large. For a
termination at the first neglected interaction, the latter is well
defined. However, the energy difference of nearby defects com-
pared to widely separated defects is now assumed to be too low.
Instead, their energy is equivalent to adjacent defects.

Thus, both types of terminations keep the ranking of differ-
ent configurations while for the termination at the first
neglected interaction also the energies between defects just
outside of the considered interaction radius are well defined.
The latter is of significant importance for KMC simulations and
is therefore used in this work.

Compared to the work from 2014, a nearly constant energy
shift of 0.05–0.1 eV to lower absolute energies for this work was
found. Main reason for this energy shift is the ‘termination at
the first neglected interaction’ of the interaction energies as
discussed above, where the first interaction, which is assumed
to be zero, is used as a reference. Another reason is the new
extrapolation method of the energies for different supercells to
an infinitely large supercell to avoid any size dependencies
using finite size correction.46

Thirdly, in the work from 2009,44 we found a smaller
1NN V–V repulsion energy (0.77 eV), not because of the missing
finite-size correction as suggested earlier,46 but because of the
missing Hubbard U parameter and the different termination.
A Hubbard U parameter was used in the work from 2014 and
this work.

Besides the interaction energies, also the edge energies were
calculated differently. While in our earlier publications,44,46

edge energies were only calculated in a 2 � 2 � 2 supercell,
in this paper edge energies are extrapolated from a 2 � 2 � 2
and a 3 � 3 � 3 supercell to an infinitely large supercell.

Kinetic Monte Carlo

In the literature, the oxygen ion conductivity in ceria was
calculated using analytical models33,34 and Kinetic Monte Carlo
(KMC) simulations.38,45,46,132,145,151,153,160,166–168

The KMC method can be used to simulate kinetic processes
in a system dynamically from state to state like the oxygen ion
migration.38,209 Instead of propagating the classical equations
of motions forward in time and simulating atomic vibrations in
time steps of about 10�15 s, which is done in molecular
dynamics (MD),210–212 KMC simulations use the knowledge
that systems typically evolve with time through diffusive jumps
from state to state.213 These occasional jumps shall be limited
by an energy barrier Emig,i,j, which has to be surmounted by the
system for each atom i and each corresponding pathway j.

As the transition rate Gi;j ¼ n0;i;j � e
�
DEmig;i;j

kBT with the attempt
frequency n0,i,j depends only on the initial and transition state
according to the transition state theory,214,215 the KMC method is
again a Markov process. In this work, we assume that the attempt
frequency n0,i,j = n0,base is similar for all jump configurations as
test calculations with multiple attempt frequencies showed only
a minor influence on the conductivity. We use the attempt
frequency in pure ceria at constant volume (1.47 � 1012 s�1),
which was calculated in an earlier work.108 This value is lower
than the ‘typical value’ of 1013 s�1, which is applied in many KMC
studies. Furthermore, this used value is lower than the value
calculated by Dholabhai et al. using DFT (5 � 1012 s�1)166 and
the value calculated by Tarancón et al. using classical molecular
dynamics, which is (5.4 � 0.3) � 1012 s�1 for the Ce–Ce and
Ce–Gd edge in Ce0.92Gd0.08O1.96.216 The ionic conductivity
increases proportionally to the attempt frequency.

Practically, an ideal three-dimensional fluorite-structured
lattice consisting of a cation- and anion sublattice is created
and filled randomly according to eqn (1) with cerium or dopant
ions and oxygen ions or oxygen vacancies, respectively. An
oxygen vacancy and jump direction is randomly chosen and
the jump is performed, if a random number in the interval [0,1[

is smaller than the Boltzmann probability pi;j ¼ e
�
DEmig;i;j

kBT .
The latter is repeated until the number of successful jumps
reaches a prespecified number of Monte Carlo steps per
particle (oxygen ion).217

The time for each Monte Carlo step Dt is given by the total
jump rate Gtotal ¼

P
i

P
j

Gi;j , which is the sum of all rates for

each vacancy or atom i and each corresponding pathway j.
Analogous to a first-order exponential decay process, the probability
that a jump has not been performed is given by psurvival = e�Gtotalt

and the elapsed time Dt ¼ � 1

Gtotal
lnðrÞ can be drawn with a

random number r from the interval ]0,1[.213 For ceria in
thermodynamic equilibrium, the average time is

hDti ¼ 1

Gtotalh i ¼
XNV

i¼1

X6
j¼1

Gi;j

� 	 !�1
(12)
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with the number of oxygen vacancies NV and

Gi;j

� 	
¼ n0;base � e

�
DEmig;i;j

kBT

* +

¼ n0;base
MCS

Natt

(13)

with the number of Monte Carlos Steps MCS, the number of jump
attempts Natt and the attempt frequency for all jumps n0,base.
This results in the total physical time span per simulation

t ¼MCS � hDti ¼ Natt

6NV � n0;base
: (14)

For doped ceria, typically used numbers of Monte Carlos Steps
and total physical time spans are 100 times the number of
oxygen ions and 10�6 s, respectively. At low temperature, jumps
are rarely accepted and the number of jump attempts increases
rapidly. In the ‘dynamic scaling’ method, jump probabilities
are scaled by a factor A such that the most probable transition,
which has at least 100 jump attempts cumulated with more
probable transitions within 109 total jump attempts, has the
probability 1. This decreases the computation time by a factor A
without any impact on the accuracy of the calculations according
to our test simulations. The simulated physical time span has to
be multiplied with A in this method.

Commonly, the ionic conductivity is calculated from the
mean displacement of oxygen ions. For this purpose, the mean
displacement is transformed into a tracer diffusion coefficient
that can be converted into mechanical mobility using the
classical Einstein relation (eqn (8)) for non-interacting defects.
However, in doped ceria, non-dilute concentrations lead to a
correlation of motion of the ions and the Einstein relation
cannot be applied. Here, a small electric field with the strength
ex is applied in the x-direction and the oxygen ion conductivity
is calculated from the mean displacement of all oxygen ions hxi
in the field direction:45,46,218–220

s ¼ hxi
ext

qnV (15)

where q and nV are the charge and concentration of the oxygen
vacancies, respectively. The conductivity is identical for electric
field directions along all three basis vectors of the unit cell as
all directions are isotropic. Test calculations showed identical
conductivities if an electric field in all three directions of the
lattice, i.e. (111) direction, is used. The electric field strength
has to be chosen large enough to induce a significant mean
displacement and small enough to ensure a linear relationship
between mean displacement and field strength, which was
verified in this work.45 The mean displacement must be inves-
tigated in thermodynamic equilibrium; therefore, the anion
sublattice has to be equilibrated by a previous KMC simulation.

KMC simulations were performed using the in-house developed
software iCon170 according to an earlier work in a 16 � 16 � 16
supercell with 49 152 ions or vacancies and periodic boundary
conditions.46

Random lattice configurations were used. Anion sublattices
were at first equilibrated by 100 Monte Carlo steps per particle.
For low temperatures, lattices were equilibrated at higher
temperature, and subsequently only 10 Monte Carlo steps per
particle for equilibration were used.

An electric field strength of 0:1
kBT

ql
with the charge of the

oxygen ion q and the jump distance l was used, which had no
influence on the thermodynamic equilibrium according to an
earlier work.45 Dynamical scaling was activated for temperatures
below 500 1C where up to 10�5% of the most probable jumps from
a sampling size of 5 � 109 were always accepted. Tests confirm no
influence of the dynamical scaling on the ionic conductivity.

Simulations of the ionic conductivity were repeated at least
ten times each with 100 Monte Carlo Steps per particle. The
standard error on the conductivity results primarily from the
use of different starting lattices.

Though we thoroughly discussed the change in the lattice
parameter as a function of dopant fraction (Section 2.1), we
decided to neglect this influence here due to experimental
scattering and use the lattice parameter of pure ceria for all
simulations. However, this influence can be easily understood
from eqn (8). For an increasing jump distance l, the concen-
tration of the charge carriers decreases with ni p l�3 and the
diffusion constant increases with Di p l2. As a result, the
conductivity is inversely proportional to the lattice parameter.
The result is similar for eqn (14) and (15). Here, the electric
field strength ex is considered for both the jump probabilities,
which influences the number of jump attempts Natt, and the
calculation of the conductivity (eqn (15)). Larger lattice para-
meters lead to lower fields in the jump probabilities. The
underestimated lattice parameter of a finished KMC simulation
can be corrected by decreasing the electric field strength in
eqn (15) accordingly. At the same time, the mean displacement
of all oxygen ions hxi in the field direction has to be increased
with the lattice parameter.

Experimental details

Samples were prepared by dissolving cerium(III) nitrate hexa-
hydrate (99.9%, Chempur) and citric acid (VWR International,
2.5 equivalents) in water. During mixing for several hours at
50 1C the sol–gel transformation occurred. The temperature
was increased to 350 1C where the produced foam was dried for
three hours and subsequently calcined for four hours at 1000 1C.
The calcined powder was dry milled in a planetary mill,
uniaxially pressed to disks (10 mm in diameter and 2 mm thick)
and sintered in air at 1400 1C for 24 hours. The composition was
successfully verified using X-ray diffraction (Theta–Theta diffracto-
meter, STOE, Darmstadt, Germany). Density measurements
according to the Archimedes method gave high densities around
98% of the theoretical value. For impedance measurements,
samples were coated with platinum paste and connected with
a platinum wire. Impedance spectroscopy measurements were
performed in air using a two-point geometry (Solatron 1260) with
frequencies between 107 and 7 � 10�2 Hz. The bulk semicircle
was identified according to the literature.221 The depressed bulk
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semicircle in the complex impedance plot was analyzed using
an equivalent circuit composed of an RQ-element with the
constant phase element Q. Further details will be presented in
an upcoming paper.222 The ionic conductivity was calculated

according to s ¼ d

AR
with the sample thickness d and the area A.
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