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We investigate the dopant distribution and its influence on the oxygen ion conductivity of ceria doped 

with rare earth oxides by combining density functional theory and Monte Carlo simulations. We calculate 

the association energies of dopant pairs, oxygen vacancy pairs and between dopant ions and oxygen 

vacancies by means of DFT+U including finite size corrections. The cation coordination numbers from 

ensuing Metropolis Monte Carlo simulations show remarkable agreement with experimental data. 

Combining Metropolis and Kinetic Monte Carlo simulations we find a distinct dependence of the ionic 

conductivity on the dopant distribution and predict long term degradation of electrolytes based on doped 

ceria. 

I. Introduction 

During the last decades, producing clean energy efficiently has 

become a major topic in scientific research due to the pressing 

issues of air pollution and global warming. One effective 

approach is the direct conversion of fuel and oxygen to electrical 

energy using solid oxide fuel cells (SOFC). The performance of 

these cells is significantly determined by the oxygen ion 

conductivity of their electrolytes. The best known material for 

this purpose is yttria-stabilized zirconia (YSZ) which exhibits 

sufficient ionic conductivities only at elevated temperatures (ca. 

1300 K).1 However, high operation temperatures can lead to 

enhanced degradation and thus lower lifespan of the fuel cells. 

An alternative material of interest is cerium oxide (CeO2, ceria) 

doped with a rare earth oxide (RE2O3). Using Kröger-Vink 

notation the dissolution of RE2O3 into ceria can be described by 

eqn (1) 

RE2O3
CeO2
→   2RECe

′ +VO
∙∙ + 3OO

x  (1) 

showing that positively charged oxygen vacancies VO
∙∙  are 

introduced to compensate the negative charge of RECe
′  cations. 

The high oxygen ion conductivity of doped ceria at intermediate 

temperatures (773-973 K) is due to the higher mobility of oxygen 

vacancies compared to YSZ.1 The ionic conductivity varies 

depending on the type of the rare earth oxide and the doping 

level. Among the different rare earth oxides the highest ionic 

conductivity was reported by Yahiro et al.2 for samarium (SDC) 

and gadolinium (GDC) doped ceria. The same authors also found 

a maximum in ionic conductivity at approximately 20 atom-% for 

SDC.3 Although a lot of experimental4–6 as well as theoretical 

research7–19 was conducted in recent years, the exact reason for 

the maximum remains incompletely explained. One explanation 

for the decrease in conductivity at high rare earth fractions is the 

attraction of oxygen vacancies to the trivalent rare earth ions 

which leads to the trapping of oxygen vacancies and lowered 

oxygen ion mobility. Furthermore, rare earth ions with larger 

ionic radii can result in a higher jump barrier for oxygen ions. In 

each jump the oxygen ion has to cross a ‘migration edge’ formed 

by two neighbouring cations. The occupation of this edge with 

rare earth ions that are larger than the cerium ion increases the 

energy barrier (edge energy) for the respective jump.12,20–22 

Another possible explanation is the repulsion and ordering of the 

oxygen vacancies.5,23  

 Computational studies on the conductivity of ceria are often 

based on Molecular Dynamics (MD) using empirical pair 

potentials.24,25 The advantage of Monte Carlo methods that are 

used in this study is the possibility to activate and deactivate 

different interactions in the lattice and investigate their influence 

on the ionic conductivity. 

 First simulations to predict the oxygen ion conductivity of 

doped ceria based on a Kinetic Monte Carlo (KMC) approach 

were performed by Murray et al.9 using migration energies for 

oxygen ion jumps from empirical pair potentials. A simple model 

for the calculation of migration energies from density functional 

theory (DFT) was proposed by Nakayama and Martin12 using a 

linear combination of association energies and edge energies. 

Based on this model Grope et al.22 simulated the oxygen ion 

conductivity of doped ceria using KMC. Further KMC 

simulations on doped ceria were performed by Dholabhai et 

al.19,26 as well as Oaks et al.27 However, all simulations were 

performed using randomly distributed dopants in the cation 

lattice, thus neglecting the effects of dopant ordering on the 

oxygen ion conductivity. The assumption of a random cation 

distribution may be justified by the fact that the solid solution of 

CeO2 and RE2O3 is normally prepared by mixing both oxides or 

by following the co-precipitation route. Then, in the as-prepared 
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solid solution Ce1-xRExO2-x/2 the cations may be distributed 

randomly. As it is well known that cation diffusion in the fluorite 

structure is very slow28 the ordering of the cations at the 

operation temperature of the SOFC i.e. the time to reach the 

equilibrium distribution of the cations can take several years 

depending on operation temperature. However, SOFCs are 

expected to have an operation time of several years, and the 

ordering of cations may gain importance in the long term 

degradation of the ionic conductivity of oxygen ion conductors as 

observed experimentally.29 

 For this reason we combined DFT+U and Monte Carlo 

methods to study the correlation between the defect distribution 

and the oxygen ion conductivity of rare earth doped ceria. We 

calculated association energies for defects in doped ceria from 

first principles for different defects and for different distances 

between the defects. With these energies we performed 

Metropolis Monte Carlo30 (MMC) simulations to predict the 

distribution of rare earth ions and oxygen vacancies in doped 

ceria in thermodynamic equilibrium. The lattices obtained from 

the MMC simulations were used as starting configurations for 

Kinetic Monte Carlo simulations in order to investigate the 

oxygen ion conductivity for different defect distributions. We 

would like to point out that the aim of this study is the 

investigation of the influence of doping and dopant ordering on 

the oxygen ion conductivity rather than the prediction of absolute 

values of the conductivities. In this way we want to contribute to 

a better understanding of electrolyte degradation.  

It is known that under oxygen poor conditions ceria can be 

reduced leading to the formation of polarons31,32 and a number of 

theoretical studies has been dedicated to this subject33–38. 

However, we restrict our simulations to conditions were the 

number of polarons is much smaller than the dopant level and can 

thus be neglected. 

 The paper is organized as follows: In part II we introduce the 

implemented Metropolis and Kinetic Monte Carlo algorithm as 

well as the underlying model of pair interactions. Subsequently 

we describe the general DFT setup for the calculation of 

association energies and edge energies. In part III we present the 

results of our DFT calculations and the trends found for the 

different interactions and rare earth ions. Using these energies, 

we simulate the defect distribution in doped ceria and investigate 

its influence on the oxygen ion conductivity using KMC 

simulations. In part IV we give a short summary. 

II. Methods 

1 Metropolis Monte Carlo Simulations 

In order to determine the equilibrium defect distribution in doped 

ceria the Metropolis Monte Carlo algorithm30 was employed. The 

algorithm was implemented in C++. The MT19937 random 

number generator,39 implemented in the GNU Scientific 

Library,40 was used to provide the random numbers needed for 

the simulations. 

1.  Two sublattices with periodic boundary conditions forming 

the fluorite structure are created with a random distribution of 

oxygen and oxygen vacancies in the anion lattice and a 

random distribution of cerium and dopant ions in the cation 

lattice. The fraction of oxygen vacancies is fixed by the 

dopant fraction according to eqn (1). 

2.  The positions of two different, randomly chosen ions (or 

oxygen vacancy) within a sublattice are permuted and the 

change in energy 𝛥𝐸  is calculated using a model of pair 

interactions (see below). 

3.  A uniform random number 𝑧 in the interval [0,1[ is drawn, 

and the permutation is accepted for numbers smaller than the 

Boltzmann probability 𝑝: 

𝑝 = e
−
∆𝐸 
𝑘B∙𝑇 (2) 

 Here T is the absolute temperature and kB is the Boltzmann 

constant. Otherwise (for z≥p) the permutation is revoked. 

4. Steps 2 and 3 are repeated until the average energy of the 

system does not change any more and thermodynamic 

equilibrium is reached. Subsequently, properties like the 

energy and the coordination number are averaged over 5∙105 

further Monte Carlo steps. Test simulations with more steps 

showed no influence on the results. 

The dependence of the extracted properties on the size of the 

simulation cell was investigated. To ensure convergence all 

simulations were performed in a simulation cell containing 

12x12x12 unit cells with a total number of 20736 ions and 

vacancies. It should be noted that in the simulations the positions 

of atoms were not relaxed but the ideal positions of the fluorite 

structure were maintained. Nevertheless, the relaxation of atomic 

positions is implicitly covered by the ab initio energies used to 

calculate the change in the lattice energy 𝛥𝐸 . The calculation of 

this energy in every step is a critical point in the simulation. Since 

it is impossible to calculate the energy of the whole lattice by 

DFT methods we applied a simple pair interaction model.12 In 

this case the energy 𝐸conf of a configuration is calculated from 

the interactions of the defects (eqn (3)). There are three types of 

interactions: interaction of oxygen vacancies in the anion 

sublattice (V-V), interaction of rare earth ions in the cation 

sublattice (RE-RE), and interaction of rare earth ions and oxygen 

vacancies connecting the sublattices (RE-V).  

𝐸conf =∑𝑁V−V
i ∙ 𝛥𝐸V−V

i

4

i=1

+∑𝑁RE−V
i ∙ 𝛥𝐸RE−V

i

2

i=1

+ 𝑁RE−RE
1 ∙ 𝛥𝐸RE−RE

1  

(3) 

Here 𝑁A−B
i  and 𝛥𝐸A−B

i  denote the number and association energy 

of defect pairs A-B in the i-th neighbour (iNN) position, 

respectively. The interaction range was cut off at 5.5 Å for every 

defect pair since the association energy decays to a negligible 

value at this distance (see part III). The different interactions 

considered in this model are shown in Fig. 1. It should be noted, 

that there are two distinct V-V interactions in the 3NN distance, 

as there are two different geometries, one with (3bNN) and one 

without (3aNN) a cation between the oxygen vacancies. 
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Fig. 1 2x1x1 supercell of the ceria fluorite structure with cerium ions 
(green), rare earth ions (blue), oxygen ions (red) and oxygen vacancies 
(red boxes). Interactions considered in the Metropolis Monte Carlo 
approach are shown. For each interaction RE-V, V-V and RE-RE the 
distance is denoted as iNN for the i-th nearest neighbour. There are two 
distinct interactions for V-V 3NN denoted as 3aNN (without a cation 
between the vacancies) and 3bNN (with an intermediary cation).  

In experiments, properties like coordination numbers are mostly 

measured at room temperature. For that reason we simulate 

lattices at 300 K. However, it is well known that cation diffusion 

in ceria is orders of magnitude smaller than the oxygen 

diffusion.28 Thus thermodynamic equilibrium for rare earth ions 

cannot be expected at room temperature. Therefore we apply a 

two-step simulation to reproduce the experimental process in a 

generalized form. It consists of sintering at high temperature 

(typically 1700 K to 2100 K in experiments) and subsequent 

cooling to room temperature: 

1. In the first step it is assumed that at temperatures above 2/3 of 

the ceria melting point, i.e. 1500 K, rare earth ions and 

oxygen vacancies are mobile and all defects may adopt an 

equilibrium distribution. Thus, both lattices are 

simultaneously equilibrated at 1500 K. 

2. At room temperature oxygen vacancies (or oxygen ions) are 

still mobile while cations are not. Thus, in the second step 

only the anion lattice is further equilibrated while the cation 

lattice is kept fixed. However, in this case interactions of rare 

earth ions and oxygen vacancies are still taken into account. 

Metropolis Monte Carlo simulations were carried out for 

Ce1−𝑥RE𝑥O2−𝑥/2 within the range from 𝑥 = 0.005 to 𝑥 = 0.5 with 

a step size of 0.005. Each simulation point (shown in part III) was 

obtained by averaging over 20 individual simulations.  

 

2 Kinetic Monte Carlo Simulations 

The Kinetic Monte Carlo algorithm41 was implemented in C++ in 

a similar way like the MMC algorithm, using the MT19937 

pseudo random number generator39 and has already been 

successfully applied in a previous study.22 Simulation cells 

containing 16x16x16 ceria unit cells and periodic boundary 

conditions were used. To ensure good statistics, 10-40 cells were 

simulated and the results were averaged depending on the 

variance of the ionic conductivity. 

 In each step of the simulation an oxygen vacancy and a jump 

direction are randomly chosen. The migration energy 𝐸mig of this 

possible jump event, which is the energy barrier between initial 

and final state, is calculated. The corresponding Boltzmann 

probability 𝑝 = exp (−
𝐸mig

𝑘B𝑇
) is compared to a uniform random 

number [0,1[ and the jump is performed if the random number is 

smaller than 𝑝. The algorithm is repeated until the number of 

successful simulation steps reaches a pre-specified number of 

Monte Carlo Steps per particle (MCS/P) where the number of 

particles corresponds to the number of oxygen ions. 

 The migration energy 𝐸mig depends on the current ionic lattice 

configuration. Within the present computational limits it is not 

possible to calculate all occurring configurations by means of 

DFT due to their vast amount. Therefore we model the migration 

energy using (a) calculated edge energies and (b) pair 

interactions. 

 The migration of oxygen ions or vacancies is considered 

between adjacent tetrahedral oxygen sites as shown previously.12 

Along this migration pathway two cations form a ‘migration 

edge’. In pure CeO2 only cerium ions are at the migration edge, 

while doping with rare earth oxides leads to configurations with 

one or two rare earth ions at the migration edge (Fig. 2). These 

edge energies 𝐸edge are explicitly calculated using DFT (see next 

section). 

 
Fig. 2 Possible migration edge configurations in rare earth doped ceria. 
Ce-Ce edge (left), Ce-RE edge (middle) and RE-RE edge (right). Cerium 
ions (green), rare earth ions (blue), oxygen ions (red) and oxygen 
vacancies (red boxes). 

Further configurations can emerge due to additional defects on 

neighbouring sites. These configurations are modelled by 

introducing pair interaction energies. The configuration energies 

𝐸conf for the final and the initial state of the oxygen ion jump are 

calculated according to eqn (3) using only the V-V and RE-V pair 

interactions. To calculate the resulting migration energy 𝐸mig we 

use a linearized energy model (Fig. 3) as described in literature42–

44 where half of the change in configurational energy 

(∆Econf = Econf,final - Econf,initial) between final and initial state is 

added to the edge energy: 

𝐸mig =  𝐸edge +
∆𝐸conf
2

 (4) 

Rare earth ions and oxygen vacancies are only taken into account 

when they are within a distance of 4.7 Å from the migrating 

vacancy. Larger distances will be investigated in a further study.  

 
 

Fig. 3 Total energy depending on the reaction coordinate of an oxygen 
vacancy jump (left) and corresponding initial state of the migration 
(right). 

If a small electric field22 𝜖 is applied in x-direction the oxygen 

ion conductivity is given by 𝜎 =
〈𝑥〉

𝜖𝑡
𝑞𝑛, where 〈𝑥〉 is the mean 

displacement of all oxygen ions in field direction, q the oxygen 

ion charge and n the concentration of oxygen ions. 𝑡 is the 

physical time span simulated 𝑡 =
𝑁

6𝑁v𝜈0 
, with the number of jump 

attempts N, the number of oxygen vacancies 𝑁v and the attempt 
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frequency 𝜈0 which is assumed to be a constant scaling factor of 

1013 Hz.22 A linear dependence between <x> and t was found as 

expected (see Fig. S1). 

Because the value of 𝜈0 is not exactly known and the 

experimental data for oxygen ion conductivity in doped ceria 

show some scattering we do not aim to reproduce absolute values 

of the oxygen ion conductivity but concentrate on the influence of 

defect interactions and different simulation lattices. It is further 

noted that for each jump event only an average time is calculated 

in order to predict the total oxygen ion conductivity, and thus the 

contribution of a specific jump configuration to the conductivity 

remains unknown. 

 Pair correlation functions for different species in the 

simulation cell were found to be identical for simulations without 

and with the electric field, clearly demonstrating that the 

thermodynamic equilibrium is not changed by the external 

electric field. 

 In this study two techniques are combined to speed up the 

KMC simulations: dynamic renormalization of the Boltzmann 

probabilities and ‘MMC equilibrated lattices’. 

 In our earlier study the Boltzmann probabilities were 

normalized in a way that the jump with the highest probability is 

accepted every time.22 In this study the first 2∙106 simulation 

steps were used to renormalize the Boltzmann probabilities to the 

probability corresponding to the lowest occurring energy, gaining 

a computational speedup of up to one order of magnitude without 

loss of accuracy. No jumps were observed with a renormalized 

probability greater than one during the main KMC run. 

 Starting from a random lattice, a pre-run has to be performed 

in KMC to reach thermal equilibrium regarding the distribution 

of the oxygen vacancies, which takes a large amount of 

computation time.22 Instead we use now the much faster MMC 

algorithm to equilibrate the oxygen vacancies in the lattices 

before starting the KMC simulation. Thus the time consuming 

pre-run can be disregarded, leading to a decrease in simulation 

time up to a factor of two orders of magnitude.  

 Beside the benefit of the vast computational speedup, MMC 

allows to simulate different cation distributions. This is of 

particular interest as this study aims to study the influence of 

dopant ordering on the oxygen ion conductivity which is 

generally neglected in other studies.9,22 The lattices are simulated 

as described in the MMC section; firstly simultaneous 

equilibration of dopants and oxygen vacancies at a given 

temperature T1, secondly equilibration of the vacancies at the 

KMC simulation temperature T2 ensuring the thermodynamic 

equilibrium of the oxygen vacancies. In this study three types of 

cation lattices were used. 

1.  RND: a random cation lattice. This corresponds to infinite 

temperature T1 and is used in most KMC simulations in 

literature. 

2.  EQ: an equilibrated cation lattice. This lattice is equilibrated 

at T1 = 1500 K, in order to imitate the dopant distribution in 

the typical experimental process as described in the MMC 

section. This lattice corresponds to a non-aged electrolyte at 

the operation temperature T2. 

3.    DEG: a degraded cation lattice. This lattice is always 

equilibrated at the KMC temperature (T1 = T2). The lattice 

corresponds to an electrolyte where the dopants are ordered in 

thermodynamic equilibrium of the operation temperature. As 

the diffusion of cations in ceria is very slow the ordering 

process can take years. Regarding this, the DEG lattice is a 

limiting case for long term degradation due to dopant 

ordering. 

We emphasize that MMC and KMC simulations yield identical 

results for the oxygen vacancy distribution in equilibrium, 

justifying our approach to use ‘MMC equilibrated lattices’ in the 

KMC simulations. With 200 MCS/P the statistical error of the 

simulation is smaller than the statistical fluctuation due to the 

different input lattices. All statistical errors have been properly 

propagated and are displayed in part III. 

 

3 Density Functional Theory 

General computational setup 

The pair association energies 𝛥𝐸A−B
i  and edge energies were 

calculated by means of density functional theory within the 

generalized gradient approximation (GGA) according to Perdew, 

Burke and Ernzerhof45 (PBE) and the projector augmented-wave 

method46 (PAW) using the Vienna Ab initio Simulation Package 

(VASP).47,48 Plane waves with an energy cut-off of 500 eV and a 

6x6x6 Monkhorst-Pack k-point mesh for the Fm3̅m fluorite unit 

cell were applied. The convergence parameters for electronic and 

ionic relaxation were set to 10-4 eV and 0.01 eV/Å, respectively. 

The 2s22p4 electrons of the oxygen atoms and the 5s25p66s25d14f1 

electrons of the cerium atoms were treated as valence electrons. A 

Hubbard U parameter was introduced to account for the 

localization of strongly correlated electrons by the rotational 

invariant approach.49 A value of 5 eV for the 4f-orbitals of cerium 

was chosen according to earlier studies.15,16,37 For all defective 

cells the total number of electrons in the cell was adapted to 

reproduce the actual charge state of the different defects, e.g. 

(Ce32O62)4+ for a 2x2x2 supercell containing two oxygen 

vacancies. 

 

Association energies 

The association energy of two defects can be obtained by 

calculating the energy of a cell with both defects adjacent in i-th 

neighbour position, 𝐸A−B
i , and a cell with both defects isolated 

from each other, 𝐸A−B
isolated, and subtracting both values. 

𝛥𝐸A−B
i = 𝐸A−B

i − 𝐸A−B
isolated (5) 

This is valid only if the defects in the isolated case have an 

infinite distance leading to infinite sized cells. For finite 

supercells a finite size correction has to be applied. For that 

reason the association energies were calculated for various 

supercells (2x2x2, 2x2x3, 3x3x3) thus varying the distance 

between defects in the ‘isolated case’. The energies were 

corrected for monopole interactions of the charged defects and 

extrapolated to 
1

𝑟3
→ 0 to account for higher order interactions 

with r being the distance between the defects. This correction 

scheme is based on the approach by Makov and Payne.50 The 

approach will be referred as one cell method.  

 In an alternative approach the association energy was 

calculated with single defects in separated cells instead of 

isolated defects in one cell which will be referred as two cell 

method. 
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𝛥𝐸A−B
i = 𝐸A−B

i − (𝐸A + 𝐸B) + 𝐸bulk (6) 

Again a monopole correction and extrapolation to infinite dilution 

were applied. A comparison of both methods is found in part III. 

 

Edge energies 

Energy barriers for the three migration edge configurations (Fig. 

2) were calculated in a 2x2x2 supercell. The nudged elastic band 

method51 (NEB) was used to investigate the transition states and 

the minimum energy pathways. One ionic configuration for the 

transition state (“image”) was interpolated from initial and final 

state of the migration process. Tests with more than one 

intermediate image between initial and final configuration of the 

migration showed no differences in the energies. The same is true 

for tests using the climbing image nudged elastic band method52 

(CI-NEB). The internal atomic positions in the cell were relaxed 

without changing the lattice parameter. 

III. Results and Discussion 

1 Ab initio Results 

Defect association 

The lattice constant of pure ceria was determined by fitting a 

Birch-Murnaghan53,54 equation of state to the energy for different 

cell volumes. A value of 5.49 Å for the cubic cell was achieved 

consistent with earlier studies.55,56,36 For all subsequent 

calculations the lattice parameter was fixed assuming that 

introduction of defects affects only the local surrounding while 

the total cell volume is constant. 

 The association energies between rare earth ions and oxygen 

vacancies (RE-V) were calculated for a variety of rare earth ions 

for the nearest (1NN) and next nearest neighbour (2NN) positions 

according to the one cell method. The energies were calculated 

for various supercells and extrapolated to infinite dilution as 

described in part II.3. The statistical error of this linear fit is 

below 0.01 eV for all RE-V association energies, indicating the 

quality of our computational method. The extrapolated values vs. 

ionic radius (according to Shannon57) are plotted in Fig. 4. All 

rare earth ions show an attractive interaction with the vacancies 

as it is expected from electrostatics considering the opposite 

relative charges of rare earth ions and oxygen vacancies. 

Nevertheless, there are large differences in the absolute values of 

the energies, showing a monotonous trend for the 1NN position 

from -0.75 eV for Sc3+ to -0.12 eV for La3+. These results clearly 

reveal that the association energy is depending not only on the 

Coulomb interaction but is strongly influenced by elastic effects 

as already found by Andersson et al.58 In fact, it is well known 

that association of small rare earth ions and oxygen vacancies is 

favoured and the attraction decreases with increasing ionic 

radius.59 For that reason in Fig. 4 we plot the Coulomb energy 

𝐸Coulomb for the RE-V interaction in 1NN and 2NN position as 

calculated from eqn (7). 

𝐸Coulomb =
𝑞1 ∙ 𝑞2
4𝜋𝜀r𝜀0𝑟

 (7) 

Here q is the charge of the defect with respect to the perfect 

lattice, 𝑟 is the defect distance, 𝜀0 is the dielectric constant for 

vacuum and 𝜀r is the relative dielectric constant of pure ceria 

which we calculated by means of DFT to be approximately 25. In 

Fig. 4 one can see that the curve describing the 1NN association 

energies intercepts the corresponding Coulomb energy 

approximately at the ionic radius of the Ce4+ host cation (marked 

as dashed line). This suggests that a RE3+ ion with the same 

radius as the host cation would show no relevant elastic 

contribution but the association is only due to the Coulomb 

attraction. For all cations larger than Ce4+ the absolute association 

energy is smaller than the Coulomb energy while for Sc3+, which 

is considerably smaller than Ce4+, it is larger than the Coulomb 

energy. The large association energy of -0.75 eV for Sc3+ is in 

agreement with the experimental finding60,61 of low solubility of 

Sc2O3 in ceria, since the strong association favours clustering of 

Sc3+ and oxygen vacancies and can lead to phase separation (see 

Fig. S2). 

 In contrast to the large energy differences in 1NN positions, 

the energy in 2NN positions is about -0.2 eV for all rare earth 

ions and close to the Coulomb energy of -0.25 eV, suggesting 

that the elastic effect has a strong influence only on the 1NN 

position and decays rapidly with the distance.  

 A crossing of the 1NN and 2NN energies is found for a radius 

of approximately 1.11 Å, close to the radius of Nd3+. In contrast 

to all other calculated rare earth ions La3+ (1.16 Å) is the only one 

that shows a stronger association in the 2NN than in the 1NN 

position. This means that for all RE3+ smaller than Nd3+ the 1NN 

position next to the oxygen vacancy is preferred over the 2NN 

position, while for larger rare earth ions the 2NN position is 

favoured. This observation is in accordance with the results of 

Nakayama and Martin12 and is also consistent with the 

calculations of Andersson et al.58, where the crossing was found 

for Pm3+ (1.093 Å). Furthermore, recently Dholabhai et al.19 

reported the preference for Sm3+ (1.079 Å) and Gd3+ (1.053 Å) to 

be in the 1NN position next to oxygen vacancies and for Pr3+ 

(1.126 Å) to be in the 2NN position to oxygen vacancies using 

DFT+U calculations, which is also in agreement with our 

calculations. 

 
Fig. 4 Association energies of oxygen vacancies and rare earth ions in the 
1NN (black circles) and 2NN (red crosses) position in ceria depending on 
the ionic radius of RE3+.57 Negative values imply attractive interaction. 
The Coulomb energies for 1NN and 2NN pairs according to eqn (7) are 
drawn as black and red lines respectively. The radius of the Ce4+ host 
cation is marked as dashed line. The errors of the extrapolation to 
infinite dilution are within the size of the symbols. 

In general, the trend of the energies shown in Fig. 4 is similar to 
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the one found by Nakayama and Martin12 but with an almost 

constant shift of approximately 0.3 eV to more negative values. 

This difference can be explained by the fact that the previously 

calculated energies miss any kind of finite-size correction as 

applied in this study.  

 A comparison with experimental association energies is 

possible only for a few rare earth oxides. An early study was 

performed by Gerhardt-Anderson and Nowick5 determining the 

association energies of several RE-V pairs from conductivity 

data. The values are given in Table 1. While the general trend fits 

to the calculated data except for La3+, our calculations show a 

stronger association then the experimental data. This can be 

explained by the fact that the calculated energies were 

extrapolated to infinite dilution while experimental data was 

gathered for small but finite concentrations. Wang et al.4 

determined the association energy of the Y-V pair with 

impedance spectroscopy and extrapolated the values to infinite 

dilution. This leads to an association energy (-0.43 eV) twice as 

large as the value from Gerhardt-Anderson and Nowick5 

(-0.21 eV) and even 20% larger than our calculated value 

(-0.35 eV). It can be seen that even the experimental association 

energies at low concentrations differ from the case of infinite 

dilution. Thus extrapolation is necessary for the experimental as 

well as the computational approach. 

Table 1 Experimental and calculated association energies in ceria for 

various rare earth ions (in eV). 

Rare earth ion ∆𝐻RE−V,exp
5 ∆𝐻RE−V,exp

4  𝛥𝐸RE−V
1 † 

Sc3+ -0.67 - -0.75 
Y3+ -0.21 -0.43 -0.35 

Gd3+ -0.12 - -0.29 

La3+ -0.14 - -0.12 
†This study 

 

Calculations for the interactions of two oxygen vacancies (V-V) 

were performed for distances up to 6.14 Å, i.e. the 5th nearest 

neighbour position. The results in Fig. 5 show a fast decrease of 

the association energies after the first coordination shell whereas 

for the next three shells the energy is almost constant. The 

association energy of the fifth coordination shell is considerably 

small and therefore neglected in the following simulations. All 

energies are positive indicating repulsion of the equally charged 

vacancies. The 3NN vacancy interaction with a cerium ion 

between the vacancies (3bNN) is larger than the interaction 

between two vacancies without an intermediary cerium ion 

(3aNN). 

 In Fig. 5 we compare the energies calculated with the one cell 

method eqn (5) and the two cell method eqn (6). Although both 

methods were expected to yield the same extrapolated association 

energies there is a shift between both methods. This might be due 

to the fact that, because of computational limitations, only a few 

different supercells were used to extrapolate the association 

energies. However, in the case of the one cell method all used 

cells have the same charge state and we assume that the finite size 

errors partly cancel out. We therefore rely on the energies 

obtained with this method. 

  

 
Fig. 5 Association energies of two oxygen vacancies in ceria depending 
on the distance for the one cell method (black circles) and two cell 
method (red crosses). Positive values imply repulsive interaction. The 
Coulomb energy according to eqn (7) is drawn as a black line. Error bars 
estimate the errors of the extrapolation to infinite dilution. 

 The nearest neighbour association of oxygen vacancies was 

also calculated by Nakayama and Martin12 with a value of 

0.77 eV. The difference to the value calculated in this work 

(0.90 eV) can be once again explained by the missing finite-size 

correction of the literature data, which leads to a less pronounced 

effect of repulsion. In Fig. 5 the Coulomb energy depending on 

the vacancy-vacancy distance according to eqn (7) is also plotted. 

The ab initio values are close to the Coulomb energy for all 

distances with some differences attributed to elastic effects.  

 Ismail et al.13 investigated the defect interactions in samarium 

doped ceria using DFT+U methods, and the trends concerning the 

vacancy-vacancy interaction are in agreement with our results. In 

their study they found a rapid decrease of the interaction energy 

after the first shell, an equal value for the 2NN to 4NN position 

and an energy minimum of nearly zero for the 5NN position. 

 The association energies of two rare earth ions (RE-RE) were 

calculated only for the first coordination shell (1NN) since the 

energy is already small at this distance (Fig. 6). All rare earth ions 

except of Sc3+ have similar repulsive association energies. This 

suggests that the interaction is mainly due to Coulomb repulsion 

and contains only small contributions from elastic interactions. 

Only Sc3+ shows a significantly smaller association energy which 

might be due to its small radius. In Fig. 6 it can be seen that the 

statistical error of the extrapolated association energy for some 

rare earth ions is relatively large, but the absolute value is below 

±0.02 eV for all energies. 
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Fig. 6 Association energies of two rare earth ions in ceria for the 1NN 
position depending on the ionic radius of RE3+.57 Positive values imply 
repulsive interaction. The Coulomb energy according to eq (7) is drawn 
as a black line. Error bars estimate the errors of the extrapolation to 
infinite dilution. 

Edge energies 

The edge energies for the oxygen jump in pure and yttrium doped 

ceria (YDC) (see Fig. 2) were calculated using the DFT+U NEB 

method. The calculated edge energy for oxygen ion jumps in pure 

ceria (0.52 eV) is similar to experimental values from Steele and 

Floyd62 (0.52 eV) and Adler and Smith63 (0.49 eV) (see also17). 

Previous theoretical calculations12 without U potential led to 

slightly lower values (0.48 eV). Further theoretical values scatter 

between 0.46 eV64,65 and 0.53 eV,7,66 but also higher values 

depending on the used computational details are reported.67–71 

Table 2 shows that the edge energy increases with increasing 

number of yttrium ions. Again the used U potential has only a 

minor effect on the calculated activation energy compared to 

previous calculations. Further DFT and classical calculation 

methods also suggest an increase in the edge energy with 

increasing number of yttrium ions.64,72,73 

Table 2 Edge energies for the three different migration edges shown in 

Fig. 2 (in eV). 

Type of edge Edge energy 

 this study (DFT+U)  lit12 (DFT) 

Ce-Ce 0.52 0.48 
Ce-Y 0.57 0.53 

Y-Y 0.82 0.80 

 

2 Metropolis Monte Carlo Results 

Simulations applying the Metropolis Monte Carlo algorithm as 

described in part II were performed for ceria doped with Y3+, 

Gd3+ and Sm3+ as these dopants reveal the best oxygen ion 

conductivities among the investigated rare earth oxides.74 From 

the simulated lattices the coordination numbers (CN) of Ce4+ and 

RE3+ cations can be easily obtained by summation over all 

nearest neighbours. Experimental CN of doped ceria for different 

rare earth oxides are available from literature as follows.  

 The CN for a range of rare earth oxides was investigated with 

extended x-ray absorption fine structure (EXAFS).75–78 However, 

these literature data suffer from large scattering and seem 

inappropriate for the comparison with our simulations.  

 Coordination numbers can experimentally also be obtained by 

nuclear magnetic resonance (NMR) studies but this is restricted 

to suitable nuclei. Among the rare earth oxides investigated in 

this study 89Y is the only nucleus with NMR data available.  

 Another experimental approach to CN was developed by 

Nakamura79 using the deviation of the CeO2-RE2O3 solid solution 

from Vegards law. The CN for a wide range of rare earth oxides 

were determined by applying a non-random distribution model to 

the lattice parameters obtained from x-ray diffraction (XRD) 

measurements. It should be noted, that the quality of the model 

fitting is not known and the used XRD data show some 

scattering.79  

 In pure ceria the CN of Ce4+ with oxygen is eight while in 

doped ceria, assuming a random defect distribution, the CN for 

both Ce4+ and RE3+ is 

𝐶𝑁rnd(Ce
4+) = 𝐶𝑁rnd (RE

3+) = 8 − 2𝑥 (8) 

with 𝑥 being the RE3+ fraction. 

 With an attractive interaction between oxygen vacancies and 

rare earth ions, 𝐶𝑁 (RE
3+) is expected to be reduced while 

CN(Ce4+) should be higher than in the random distribution. This 

behaviour can be seen in Fig. 7 where the simulated CN of yttria 

doped ceria are shown along with literature values from NMR 

measurements. The CN obtained by NMR measurements in three 

different studies agree fairly well with each other suggesting a 

reliable measurement of the CN in contrast to EXAFS. 

Furthermore, the CN from NMR are in good agreement with the 

simulated data beside a constant, small shift of the simulation 

data to higher values for CN(Y3+). 

 
Fig. 7 Coordination numbers of Ce4+ and Y3+ in Ce1-xYxO2-x/2 simulated in 
this study (black squares and circles) and from NMR measurements 
(triangles) according to Jain et al.,59 Kim et al.80 and Maekawa et al.81 as 
well as from XRD fitting (blue lines) according to Nakamura.79 The CN for 
both cations in a random distribution according to eqn (8) is drawn as 
black line. The CN of Ce4+ above and of Y3+ below the random distribution 
(line) exhibit the tendency of oxygen vacancies to be in 1NN position of 
Y3+.  

In Fig. 8 the simulated coordination numbers for the solid 

solution of gadolinia and ceria are shown. With the lack of other 

experimental data these values are compared only to CN from 

XRD measurements.79 It can be seen that the simulations 

reproduce the experimental data quite well. The difference at high 

gadolinium fractions might be due to the fact that the simulations 

rely on a pair interaction model. For high gadolinium content the 
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formation of larger defect clusters can be expected and the pair 

interaction model might fail. In this case ‘cluster interactions’ 

between more than two defects may have to be taken into 

account.  

 
Fig. 8 Coordination numbers of Ce4+ and Gd3+ in Ce1-xGdxO2-x/2 simulated 
in this study (black squares and circles) and from XRD fitting (green lines) 
according to Nakamura.79 The CN for both cations in a random 
distribution according to eqn (8) is drawn as black line. The CN of Ce4+ 

above and of Gd3+ below the line exhibit the tendency of oxygen 
vacancies to be in 1NN position of Gd3+. 

The simulated coordination numbers for samarium doped ceria 

are shown in Fig. 9. In contrast to gadolinium and yttrium doped 

ceria the deviation between simulated and experimental CN from 

XRD is more distinct for samarium fractions above 0.3. A reason 

for this discrepancy might be that the CN depends sensitively on 

the difference between 𝛥𝐸RE−V
1  and 𝛥𝐸RE−V

2 . For Sm3+ this 

difference is small and therefore small errors in the association 

energies might lead to large errors in the simulated CN. 

Furthermore, the deviation might be due to the fact that no 

‘cluster interactions’ were considered. 

 On the other hand it should be noted that there is only one 

experimental reference for the CN in samarium doped ceria and it 

might suffer from experimental errors. Ismail et al.18,13 recently 

reported DFT+U calculations on samarium doped ceria. From 

their calculations it seems that at higher samarium concentrations 

the formation of Sm-V pairs in 2NN is more favoured than in 

1NN position. Having this in mind, one would expect only a 

small deviation of the CN(Sm3+) from the random distribution as 

the formation in 1NN position is less probable. In fact this is 

exactly what we see for the simulated data in Fig. 9. However, 

the results of simulation and experiment both show a higher 

coordination of Sm3+ than of Gd3+ i.e. a weaker trapping of 

oxygen vacancies by Sm3+. 

 
Fig. 9 Coordination numbers of Ce4+ and Sm3+ in Ce1-xSmxO2-x/2 simulated 
in this study (black squares and circles) and from XRD fitting (red lines) 
according to Nakamura.79 The CN for both cations in a random 
distribution according to eqn (8) is drawn as black line. The CN of Ce4+ 

above and of Sm3+ below the line exhibit the tendency of oxygen 
vacancies to be in 1NN position of Sm3+.  

We emphasize that for all investigated solid solutions the good 

agreement with experiment is only given when all three types of 

interactions (RE-V, RE-RE and V-V) are included (see Fig. S3). 

Exclusion of one of the interactions would lead to a significant 

deviation from experiment resulting in exaggerated clustering 

(without RE-RE or V-V interaction) or a random distribution 

(without RE-V interaction). On the other hand, the range of the 

interactions has a less pronounced effect on the coordination 

numbers. For example, neglecting the 4NN interaction for V-V 

has only a minor effect, smaller than the simulation errors.  

 In recent theoretical82 as well as experimental82,83 studies on 

yttrium doped ceria the ordering of oxygen vacancies along 

<111>, i.e. in the 3NN position was found to be most favourable. 

Similar results were reported for yttria stabilized zirconia that 

crystallizes in the same structure as ceria.83–85 With our 

simulations we cannot confirm these findings. The simulated 

number of vacancy-vacancy pairs in different neighbouring 

positions is given in Fig. 10 for different fractions of yttrium in 

doped ceria together with the numbers in a random lattice. It can 

be clearly seen that in the simulated lattice the number of pairs is 

decreased with respect to the random distribution due to the 

repulsion of the vacancies, and for all yttrium fractions the 2NN 

pairs dominate among the investigated vacancy-vacancy pairs. 

 The fact that 2NN pairs are preferred can be attributed to three 

factors. Firstly, for each vacancy there are twelve 2NN sites but 

only eight 3NN sites. Secondly, while the energy of 3aNN is 

similar to 2NN, the repulsion of 3bNN is larger (Fig. 5). Thirdly, 

the 2NN pair can be stabilized by yttrium ions as there are five 

cation sites where yttrium ions can be in attractive interaction 

with both oxygen vacancies. For 3NN pairs this stabilization 

effect is less pronounced. In fact, simulations show that 2NN 

vacancy pairs with three or four yttrium ions dominate. 

 It should be mentioned that the ordering of vacancies might be 

affected by two limitations regarding the simulation model. 

Firstly, the accounted interactions are limited to a certain radius 

and more interactions might be necessary to describe a possible 

vacancy ordering in 3NN positions. Secondly, we used a pair 

interaction model that considers no cluster interactions. On the 
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other hand it should be mentioned that the vacancy ordering 

along <110>, i.e. vacancies on 2NN positions, is in accordance 

with theoretical studies using classical potentials.86,87,23 

Furthermore, in a recent DFT study Gopal et al.88 reported a 

preference for oxygen vacancies to order along <110> in undoped 

non-stoichiometric ceria. And also experimental studies suggest a 

favoured ordering in <110> direction.89 Thus, the ordering of 

oxygen vacancies in doped ceria has to be investigated further. 

 
Fig. 10 Simulated number of vacancy-vacancy pairs in the first four shells 
(symbols) and the corresponding random distribution (lines) depending 
on the yttrium fraction. The 2NN pairs are favoured among the shown 
pairs. The inset shows a 2NN oxygen vacancy pair with possible yttrium 
ion positions (blue) to stabilize the vacancy pair. 

3 Kinetic Monte Carlo Results 

Simulations applying the Kinetic Monte Carlo algorithm as 

described in part II were performed for yttrium doped ceria for 

temperatures of 1000 K, 800 K and 700 K for lattices RND 

(random cation distribution), EQ (cation lattice equilibrated at 2/3 

of the melting point) and DEG (fully equilibrated lattice). In Fig. 

11 the oxygen ion conductivity at 1000 K is shown. The 

simulated conductivity curves show a maximum at typical 

yttrium fractions in the range of x = 0.15 to 0.25 as reported in 

literature.90,91 Starting at small doping fractions the conductivity 

first increases due to the formation of additional oxygen 

vacancies, but decreases when the migration energy rises due to 

doped migration edges (blocking, see Table 2) and trapping of 

oxygen vacancies at yttrium ions (see Fig 3) as shown 

previously.22 

 The simulated conductivities of RND and EQ lattices are 

similar for yttrium fractions up to x = 0.16, whereas at higher 

fractions the EQ lattice shows a slightly higher conductivity. The 

conductivity of the fully equilibrated lattice (DEG) is 

considerably smaller for most yttrium fractions. 

 
Fig. 11 Simulated oxygen ion conductivity of Ce1-xYxO2-x/2 at 1000 K for 
different lattices: random cation distribution (RND, blue), cations 
equilibrated at 1500 K (EQ, red) and cations equilibrated at 1000 K (DEG, 
green).  

The origin of the difference in the oxygen ion conductivities is 

investigated using two properties: The number of defect pairs in 

the lattices obtained from MMC simulations and the number of 

oxygen jump attempts in different ionic configurations during a 

KMC run. 

 From the simulated lattices the number of different defect pairs 

in the thermodynamic equilibrium can be extracted. During a 

KMC run the systems stays in a steady state designed not to 

change this thermodynamic equilibrium. The used KMC 

algorithm generates jump attempts and accepts them with the 

corresponding Boltzmann probability 𝑝 = exp (−
𝐸mig

𝑘B𝑇
). The 

number of specific jump attempts is a measure for the number of 

specific jump configurations of a randomly chosen and randomly 

jumping oxygen vacancy. 

 The distribution of the defects in thermodynamic equilibrium 

is always controlled by two quantities: the number of possible 

configurations (configurational entropy) and the energy of every 

configuration (association energy). At low temperatures the 

defect distribution is controlled by the formation of energetically 

most favoured configurations while at high temperatures further 

configurations are possible due to the configurational entropy. 

 A typical energetically favoured configuration consists of an 

oxygen vacancy with two yttrium ions in 1NN position. In order 

to understand the influence of the cation ordering on the 

conductivity we consider three different models for the 

arrangement of these three defects (Fig. 12).  

 
Fig. 12 Different models for the arrangement of two yttrium ions in ceria. 
(A) Ions in 1NN position to each other. (B) Ions in 2NN position to each 
other. (C) Ions separated from each other. The oxygen vacancy is always 
placed in an energetically favoured position. 

 (A) Two yttrium ions are in 1NN position as described. An 

approaching oxygen vacancy will be trapped due to the strong 

attraction to both yttrium ions in the 1NN position. Furthermore, 

the energy for a jump through the Y-Y edge (Eedge = 0.82 eV) is 
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considerably larger compared to the Ce-Ce and Ce-Y edge 

(Eedge = 0.52 eV and 0.57 eV respectively) making these jumps 

very unlikely (blocking).  

 (B) Two yttrium ions are in 2NN position. In this case there is 

no Y-Y edge and thus less blocking. Furthermore, an oxygen 

vacancy cannot be in the 1NN position of both yttrium ions at 

once, resulting in a reduced association energy which is 

responsible for the trapping. Even though the number of 

influenced anion lattice sites around the yttrium ions increases 

compared to model A, the Boltzmann probability of a jump 

increases exponentially with decreasing 𝐸𝑚𝑖𝑔 thus increasing the 

conductivity. 

 (C) Two yttrium ions are separated. The trapping is further 

reduced since an oxygen vacancy can only be associated to one 

yttrium ion. 

 For the RND lattice at 1000 K (Fig. 11) the yttrium ions are 

distributed randomly (T1 = ∞) and all model configurations in 

Fig. 12 (A, B, C) appear based on statistics. The oxygen 

vacancies are distributed at lower temperature (T2 = 1000 K) and 

prefer positions next to yttrium ions. 

 
Fig. 13 Number of Y-Y pairs in 1NN (black, upper curve) and 2NN (red, 
lower curve) positions for lattices RND (lines), EQ (circles) and DEG 
(squares) at 1000 K in Ce1-xYxO2-x/2 as obtained from MMC simulations  

In the EQ lattice the distribution of yttrium ions changes due to 

the lower T1 (1500 K) as shown in Fig. 13. The number of yttrium 

ions in 1NN position (model A) decreases while the number of 

yttrium ions in 2NN position (model B) increases accordingly. 

This reduces the number of Y-Y edges and thus the blocking of 

oxygen jumps. This observation seems to be in contrast to the fact 

that model A is energetically more favourable than model B. A 

reason for this is the influence of the configurational entropy at 

1500 K. Around an oxygen vacancy there are only four 1NN 

cation sites but twelve 2NN cation sites. 

 In the DEG lattice the equilibration temperature of the cations 

T1 is as low as T2 (1000 K) leading to energetically more 

favoured configurations. In this case slightly more Y-Y 1NN 

pairs (model A) exist than in the EQ lattice especially for 

intermediate yttrium fractions (around x = 0.14) as seen in Fig. 

13. At high yttrium fractions the number of 1NN Y-Y pairs is 

similar to the EQ lattice because the high yttrium fraction always 

favours the 1NN Y-Y pairs. Furthermore, the number of 3NN and 

4NN Y-Y pair increases (see Fig. S4). This is evidence for the 

formation of larger yttrium clusters in the lattice which can 

effectively trap the oxygen vacancies and leads to a lowered 

conductivity. 

 
Fig. 14 Simulated oxygen ion conductivity of Ce1-xYxO2-x/2 at 800 K for 
different lattices: random cation distribution (RND, blue), cations 
equilibrated at 1500 K (EQ, red) and cations equilibrated at 800 K (DEG, 
green).  

In Fig. 14 and Fig. 15 the simulated conductivities at 800 K and 

700 K are shown respectively. The conductivity decreases with 

temperature because of the corresponding Boltzmann probability 

𝑝 = exp (−
𝐸mig

𝑘B𝑇
). RND and EQ lattices show a similar behaviour 

of the conductivity at 800 K (Fig. 14) and 700 K (Fig. 15) as at 

1000 K which is in agreement with the experimental values from 

literature.90,91 Since the cation distribution in RND and EQ is 

independent of the simulation temperature T2, the number of Y-Y 

pairs is the same for all temperatures. However, the number of 

jump attempts through Ce-Ce edges drops, especially at low 

yttrium fractions (see Fig. S5 and S6). The reason for this is the 

lower thermal energy which reduces the probability for oxygen 

vacancies to leave the association radius of yttrium ions 

(trapping). Furthermore, the probability of jumps through doped 

migration edges is reduced (blocking). As a result the maximum 

of the simulated conductivity is shifted to lower yttrium fractions 

which is in agreement with experimental data.90,91  

 
Fig. 15 Simulated oxygen ion conductivity of Ce1-xYxO2-x/2 at 700 K for 
different lattices: random cation distribution (RND, blue), cations 
equilibrated at 1500 K (EQ, red) and cations equilibrated at 700 K (DEG, 
green).  

In the DEG lattices the number of specific pairs changes 
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compared to 1000 K as T1 is as low as T2 (700 K or 800 K). The 

described clustering of vacancies and yttrium ions increases 

compared to higher temperatures as can be seen from the 

significant increase of the Y-Y and Y-V pairs (see Fig. S7-S9). 

Thus, the conductivity decreases more significantly with 

decreasing temperature than in RND and EQ lattices.  

 At 800 K (Fig. 14) the conductivity is nearly constant for a 

broad range of yttrium fractions. The increase of the oxygen 

vacancies is compensated by the reduction in the mobility. The 

maximum of the simulated conductivity cannot be determined.  

 At 700 K (Fig. 15) the maximum of the conductivity is 

strongly shifted compared to the other lattices as a result of the 

ordering of the yttrium ions and the resulting increased blocking 

and trapping. The maximum is found at approximately x = 0.02. 

At high yttrium fractions the conductivity increases again leading 

to a minimum in conductivity at intermediate yttrium fractions. 

This behaviour could be explained by the formation of favourable 

pathways for the oxygen ion migration. The migration energy for 

every jump depends on the configuration around the oxygen 

vacancy in the initial and final state. Because of the strong 

association energy the number of 1NN Y-V pairs has the largest 

influence on the configurational energy. It is therefore favourable 

to find pathways where the number of 1NN Y-V pairs in initial 

and final state is equal (∆𝑁Y−V
1  = 0). For low yttrium fractions 

these jumps are common since in most jump configurations there 

is no yttrium. However, for higher fractions these jump types 

appear frequently only if similar migration edges are adjacent 

(Fig. 16 left) or occur alternating (Fig. 16 right). If this ordering 

takes place on larger length scales, it can be considered as a 

percolation path which increases the conductivity as described in 

literature previously.92  

 
Fig. 16 Examples for two favoured migration paths in yttrium doped 
ceria. The favoured migration path of the oxygen is depicted as red line. 
On the left side there are similar adjacent migration edges while on the 
right side there are alternating migration edges. Cerium ions (green), 
yttrium ions (blue) and oxygen ions (red). 

In fact, in the DEG lattice for high yttrium fractions at 700 K the 

number of jumps with ∆𝑁Y−V
1  = 0 increases compared to the RND 

and EQ lattice and higher temperatures (Fig. 17). By reducing T1 

from RND lattice to EQ lattice to DEG lattice the number of 

jumps with ∆𝑁Y−V
1  = 0 for high yttrium fractions is increased due 

to cation ordering.  

 
Fig. 17 Percentage of jump attempts with ∆𝑁Y−V

1  = 0 at 700 K (red 
crosses) and 1000 K (black squares) for the three types of lattices for low, 
intermediate and high yttrium fractions. 

As can be seen in the left part of Fig. 16 the percolation path is 

favoured for configurations where two yttrium ions are in 1NN 

position to a vacancy. Indeed, the number of such configurations 

is larger in the DEG lattice at 700 K than in the EQ lattice (see 

Fig. S10) supporting the assumption of a percolation path. If such 

a path exists through parts of the lattice, the migration of oxygen 

is enhanced and thus the conductivity rises at high yttrium 

fractions as seen in Fig. 15.  

IV. Conclusion 

We calculated the association energies of different defects at 

different distances in rare earth doped ceria by means of DFT+U 

including the correction of finite size effects. The association 

energies for RE-RE pairs, V-V pairs and RE-V pairs and their 

trend agree with computational and experimental findings from 

literature. Using these energies we simulated the coordination 

numbers of cations in doped ceria and found a remarkable 

agreement with experimental data for yttrium and gadolinium 

doped ceria. We could show that all defect interactions (RE-RE, 

V-V and RE-V) have to be considered to get good agreement 

with experiment. In our simulations of yttrium doped ceria we 

found a preferred ordering of oxygen vacancies along <110>.  

 The oxygen ion conductivity of yttrium doped ceria was 

simulated using a Kinetic Monte Carlo algorithm for different 

yttrium distributions. We reduced the computation time by at 

least one order of magnitude by combining MMC and KMC 

simulations and found good agreement of the conductivity with 

experimental data. Furthermore, our results suggest that the 

yttrium distribution has a clear effect on the conductivity of the 

material. Lattices which are equilibrated at intermediate 

temperatures show a decreased conductivity. This degradation 

effect appears due to the ordering of yttrium ions and oxygen 

vacancies leading to increased trapping and more blocking 

migration edges. The ordering process requires cation diffusion 

which is very slow and thus it might take several years at typical 

operation temperatures of solid oxide fuel cells. However, the 

results of our simulations can be seen as limiting case for long 

term degradation due to cation ordering. 
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