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Abstract 
 

Ionic conductivities of solid-state materials are crucial for the performance of various applications 

ranging from batteries and fuel cells to resistive switching devices. The macroscopic ionic conductivity 

results directly from the microscopic energy landscape of ion diffusion. Lattice site energies and 

migration barriers depend on lattice defects such as vacancies and dopant ions in the local 

environment. The multiplicity of possible defect interactions with the migrating ion impedes the use 

of analytic models. While ab initio methods allow the calculation of the microscopic energy barriers 

for individual jumps, calculations of the macroscopic conductivity are computational very demanding, 

especially for more than 250 different materials and their possible ionic configurations as presented in 

this study. Kinetic Monte Carlo simulations allow the simulation of the ionic conductivity based on ab 

initio data and bridge the gap between microscopic jump events and the macroscopic conductivity. In 

this work, we discuss the Kinetic Monte Carlo method and its application to oxygen ion conductors for 

the example of doped ceria. We demonstrate how Kinetic Monte Carlo simulations can be accelerated 

to be 100 times faster with preserved high accuracy. Moreover, we report how the accuracy of Kinetic 

Monte Carlo simulations is improved with a large interaction radius and minimal computational 

expenses. 
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I Introduction 
 

The ionic conductivity in solid-state materials is one of the key properties determining material 

performance for a broad range of applications. In oxygen ion conductors, a common way to improve 

the ionic conductivity is doping with oxides of lower valent metals, whereby oxygen vacancies are 

created due to charge balance. A well-known example is the rare earth doped zirconia (YSZ).[1] In solid 

oxide fuel cells and related electrochemical devices, the ionic conductivity of the electrolyte is crucial 

for the efficiency of the cell.[2-4] For catalytic applications, the mobility of the ions can be important 

to achieve high turnover frequencies. In recent years, resistive switching has gained increasing interest, 

e.g. for application in resistive random-access memories. For the common switching mechanisms of 

valence change memories, the ion migration, and polarization due to the applied voltage is the basic 

phenomenon.[5-8] Therefore, the understanding and prediction of the ionic conductivity and mobility 

in various structures are of general interest.[9] 

A solid ionic conductor can be represented as a framework of ions with fixed positions in the crystal 

lattice wherein the charge carriers, vacancies, and interstitials, are mobile. While the immobile ions 

only vibrate around their equilibrium positions, the mobile ions perform thermally activated jumps 

between defined lattice sites. Within the harmonic transition state theory, the jump rate Γ for each 

mobile ion is determined by an attempt frequency 𝜈0 and the energy barrier 𝐸mig that must be crossed 

during the jump:  

Γ = 𝜈0 ∙ exp (−
𝐸mig

𝑘B𝑇
) (1) 

 

In the case of isotropic diffusion with uniform jump rates, the total mean squared displacement of a 

mobile ion can be calculated from the jump length 𝑙2 of an individual jump as 

〈𝑅⃗⃗2〉 = 𝑁𝑝 ∙ Γ ∙ 𝑡 ∙ 𝑙
2, (2) 

 

where 𝑁𝑝 is the number of different jumps 𝑙𝑖 available for the mobile ion. In the ideal lattice, where 

defect concentrations are very low and no defect interactions occur, jump rates and lengths are 

identical for all mobile ions. The diffusion coefficient depends on the dimensionality 𝑑 and the mean 

squared displacement 〈𝑅⃗⃗2〉 of the mobile ions in the time span 𝑡:  

https://dx.doi.org/10.1016/j.matchemphys.2020.123767
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𝐷 =
〈𝑅⃗⃗2〉

2 ∙ 𝑑 ∙ 𝑡
 (3) 

 

In ‘ideal’ materials with a dilute concentration of vacancies or interstitials and without defect 

interactions, the macroscopic ionic conductivity can be derived directly from the microscopic ion 

motion. Here, the mobility u is related to the diffusion coefficient 𝐷 by the Nernst-Einstein relation  

𝑢 = 𝑞𝐷 𝑘B𝑇⁄ , (4) 
 

where 𝑘B and 𝑇 are the Boltzmann constant and absolute temperature, respectively. The ionic 

conductivity 𝜎 is given by the concentration 𝑐, charge 𝑞, and the electrochemical mobility 𝑢 of the 

mobile ions: 

𝜎 = 𝑐 ∙ 𝑞 ∙ 𝑢 (5) 
 

In contrast, at a non-dilute concentration of vacancies or interstitials, the motion of ions is correlated 

and depends on the local environment, which could be influenced not only by the interaction of the 

vacancies or interstitials with each other but also by the presence of dopant ions and other lattice 

defects. Typical examples are doped oxygen ion conductors with defect fractions of up to 10 or 20% 

such as doped ceria or stabilized zirconia. In this case, the macroscopic transport properties are given 

by the ensemble of mobile ions with various jump rates and a simple analytical expression for the ionic 

conductivity does not exist. Lattice Kinetic Monte Carlo (KMC) simulations connect the microscopic 

jump processes with the macroscopic transport properties by tracking the statistical movement of the 

mobile ions along different migration paths with different migration energies, which can be derived 

from ab initio calculations, e.g. density functional theory (DFT). The dynamics are simplified such that 

the vibrations of the ions around their lattice positions are discarded and only the jumps between fixed 

lattice sites are considered with a pre-defined attempt frequency.[10] This approach allows 

simulations for systems with several thousand to millions of ions over a time span in the range of 

microseconds for a variety of materials to investigate the influence of composition and temperature 

on the ionic transport. Simulations of these types have been performed for doped ceria and other 

fluorite structured oxides in recent years with different energy models applied.[11-21] 

In this paper, we first summarize the theory of Kinetic Monte Carlo and then demonstrate its 

application to oxygen ion conductors using our Monte Carlo code iCon. We introduce the 

implementation details of the software, discuss possibilities of energy modeling and exemplify by the 

simulation of the ionic conductivity in doped cerium oxide. 

II Principles of Kinetic Monte Carlo 
 

The Kinetic Monte Carlo (KMC) method simulates the statistical process of ion migration in a defined 

lattice by weighting kinetic probabilities through the generation of random numbers. According to eq. 

(1), mobile ions attempt to jump to vacant neighboring sites with an attempt frequency 𝜐0 and perform 

the jump with a probability 𝑝 depending on the migration energy 𝐸mig: 
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𝑝 = exp (−
𝐸mig

𝑘B𝑇
) (6) 

 

There are two important implementations of the KMC method.[22, 23] In the ‘rejection based’ or ‘null-

event’ algorithm one of all possible jumps is selected with a uniform probability in each simulation 

step.[22] The migration energy is determined depending on the jump environment. Then, a uniform 

distribution random number 𝑍 ∈ [0,1] is drawn. If 𝑍 is smaller than the probability 𝑝 the jump is 

accepted. Otherwise it is rejected, and the algorithm starts with a new jump attempt. The time is 

advanced by a time step  

∆𝑡 = −
1

Γtot
ln(𝑍′), 

 
(7) 

where the total rate Γtot is the sum of the rates (cf. (1)) for all possible jumps and 𝑍′ is another uniform 

distribution random number ∈ [0,1]. 

In the ‘rejection-free’ or ‘rate-catalog’ approach the rates of all possible jumps are calculated and 

stored in a rate-catalog.[23] From this list, one transition is randomly selected with a probability 

proportional to the individual rate. The time is advanced by a time step according to eq. (7) and the 

rate catalog is updated. In both implementations,  the simulation is stopped if a certain criterion is 

fulfilled, e.g. a predefined number of successful Monte Carlo steps (𝑁MCS) is reached. 

Despite some discussions about the validity of the rejection-based algorithm, the equivalence of both 

algorithms was shown.[24, 25] The efficiency of the particular algorithm depends on the temperature 

as well as the underlying energy model. The computational bottleneck for the 'rejection based' 

algorithm is the fact that a large number of jumps is rejected while for the 'rejection-free' algorithm 

the updating of the rate-catalog is limiting.  

III Simulation of Ionic Conductivity 
 

Algorithm 

In this work, we apply the ‘rejection-based’ algorithm during our kinetic Monte Carlo simulations to 

obtain the ionic conductivity in single crystals.  

In literature, the ionic conductivity is most often derived after calculating the diffusion coefficient of 

the mobile ions according to equation (3) and using then the Nernst-Einstein relation, although the 

latter is only valid in the dilute case.[26] To avoid the limitations imposed by the Nernst-Einstein 

relation,  the conductivity can be directly obtained from the simulation by applying a weak electric field 

𝐸⃗⃗ (cf. Figure S1), which is a valid approach as shown in the literature.[26-30] Following the definition 

of the electrochemical mobility u, which is equal to the mean drift velocity per electric field strength, 

the mobility is then given by  

𝑢 =
〈𝑅⃗⃗ ∙ 𝐸⃗⃗〉

|𝐸⃗⃗|
2
∙ 𝑡
 , (8) 
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where 〈𝑅⃗⃗ ∙ 𝐸⃗⃗〉/|𝐸⃗⃗| is the mean displacement of all mobile ions in the direction of the electric field and 

𝑡 is the simulated time span.[26]   

The simulated time span is the sum of all individual time steps ∆𝑡 (see Eq. (7)) depending on the total 

rate Γtot at a given time. However, since we are interested in the steady-state conductivity, we can 

calculate the simulated time from an expected probability as discussed in appendix A. Then the time 

is calculated from the total number of jump attempts 𝑁att divided by the number of mobile ions 𝑁𝑐, 

the number of available jump directions 𝑁𝑝 for each mobile ion and the attempt frequency 𝜐0 as 

discussed in a previous publication:[29] 

𝑡 = 𝑁MCS ∙ (∑∑〈Γ𝑖𝑗〉

𝑁𝑝

𝑖=1

𝑁𝑐

𝑗=1

)

−1

=
𝑁att

𝑁𝑐 ∙ 𝑁𝑝 ∙ 𝜈0
 (9) 

 

In the presence of an electric field, the migration energies are modified according to  

𝐸mig
′ = 𝐸mig

 ±
𝑞 ∙ 𝐸⃗⃗ ∙ 𝑙

2
, (10) 

 

antiparallel (+) or parallel (–) to the field where 𝑙/2 is the vector from the position of the migrating 

charge carrier in the initial state to its position in the transition state assuming that the transition state 

is in the middle between initial and final state, which is correct for relatively small fields. Without the 

electric field, the mean displacement 〈𝑅⃗⃗〉 of the mobile ions is given by  

〈𝑅⃗⃗〉 =
𝑁MCS
𝑁𝑐

〈𝑟 〉 =
𝑁att
𝑁𝑐
〈𝑟att 〉 =

𝑁att
𝑁𝑐 ∙ 𝑁𝑝

∑𝑙𝑖 exp (−
𝐸mig

𝑘B𝑇
)

𝑁𝑝

𝑖=1

= 0, (11) 

 

where 〈𝑟att〉 is the mean displacement of a single jump attempt. For isotropic diffusion, this equates to 

zero, since every jump vector is counterbalanced by one in the opposite direction. With an electric 

field, there is a non-zero net displacement in the direction of the field and a combination of eqs. (10) 

and (11) leads to: 

〈𝑅⃗⃗ ∙ 𝐸⃗⃗〉

|𝐸⃗⃗|
=

𝑁att
𝑁𝑐 ∙ 𝑁𝑝

∑
𝐸⃗⃗ ∙ 𝑙𝑖

|𝐸⃗⃗|
exp (−

𝐸mig

𝑘B𝑇
+
𝑞 ∙ 𝐸⃗⃗ ∙ 𝑙𝑖
2𝑘B𝑇

)

𝑁𝑝

𝑖=1

 (12) 

 

For weak electric fields, the exponential term can be linearized with respect to 𝑞𝐸⃗⃗𝑙𝑖/2𝑘B𝑇 and 

equation (12) simplifies to:i 

 
i Here we implicitly assume that the energy barrier is equal for each jump vector 𝑙𝑖. An analytic solution without 
this limitation is still possible as long as the barriers do not depend on the lattice site and migration is still 
isotropic. 
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〈𝑅⃗⃗ ∙ 𝐸⃗⃗〉

|𝐸⃗⃗|
=

𝑁att
𝑁𝑐 ∙ 𝑁𝑝

exp (−
𝐸mig

𝑘B𝑇
)
𝑞|𝐸⃗⃗|

2𝑘B𝑇
∑
(𝐸⃗⃗ ∙ 𝑙𝑖)

2

|𝐸⃗⃗|
2

𝑁𝑝

𝑖=1

 (13) 

 

Since ∑(𝐸⃗⃗ ∙ 𝑙𝑖)
2
|𝐸⃗⃗|

2
⁄ = ∑ 𝑙𝑖

2 𝑑⁄  for isotropic diffusion, a combination of eq. (13) with eqs. (8) and (9) 

yields the same expression for the mobility u as eqs. (1) to(5). However, for variable migration energies, 

this analytic expression is no longer valid and KMC simulations are necessary to yield the mean 

displacement of all mobile ions, which jump in different local environments. Together with the 

simulated time, it is then possible to calculate the ionic mobility and conductivity according to eq. (8).  

 

Transition rates 

For the simulations, it is required to know all jump rates according to eq. (1). Here, we apply the 

common simplification that the pre-exponential factor 𝜈0 is a constant although the value might 

change depending on the local environment.[31] With 𝜈0 constant, the only variable is the migration 

energy 𝐸mig which is the difference between the energies of initial state and transition state. Both 

energies depend on the respective crystallographic site and the local ionic environment, i.e. the 

occupation of lattice sites by regular ions, dopant ions, and oxygen vacancies. As the number of 

possible configurations gets enormous with increasing interaction radius, an appropriate energy model 

has to be applied (see below). 

 

 

Electric field 

To obtain the ionic conductivity directly from the simulation, a weak electric field is applied, as 

explained in section III (cf. eqs. (8) and (10)). For this purpose, the strength and the direction of the 

electric field 𝐸⃗⃗ must be defined. For strong electric fields, the mean displacement of the ions in the 

field is large and the migration statistics improve. However, the field has to be weak enough such that 

its influence is small compared to the migration energies and the linear approach in eq. (8) is still valid.  

In our simulations, we define the electric field by the corresponding energy contribution in units of 

𝑘B𝑇 which makes the field contribution in eq. (12) independent of temperature. The field strength is 

then adjusted to the largest jump vector, such that max(𝑞 ∙ 𝐸⃗⃗ ∙ 𝑙𝑖 2⁄ )  for all possible jump vectors 𝑙𝑖 

equals the defined value. A value of 0.1 has proven to be a good choice for most of the investigated 

systems (cf. Figure S2). The resulting typical field strength in the simulations (105-106 V cm-1) is much 

higher than in most experiments, e.g. 10-1 V cm-1 during conductivity measurements. 

 

 

Normalization 
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As the migrating ion has to overcome the migration barrier, only a small fraction of jump attempts 

leads to a successful transition in the rejection-based algorithm. For example, with a migration energy 

of 0.5 eV and a temperature of 500 K, on average only one out of 105 attempts is accepted. To 

accelerate the simulations, the migration energies are normalized such that the jump with the lowest 

possible migration energy is always accepted. The transition probability is then given by 𝑝/𝑝max where 

𝑝 is the Boltzmann probability from eq. (6) and 𝑝max = exp(−min(𝐸mig)/(𝑘B𝑇)). This normalization 

does not change the relative probability of the individual jumps and is compensated in the calculation 

of the simulated time span by modifying eq. (9): 

𝑡 = ∑
𝑁att,𝑘

𝑁𝑡,𝑘 ∙ 𝜈0 ∙ 𝑝max

𝑁MCS

𝑘=1

 (14) 

𝑁𝑡,𝑘 =∑𝑁𝑝,𝑘,𝑗

𝑁𝑐

𝑗=1

 (15) 

Where 𝑁𝑝,𝑘,𝑗 is the number of jump directions of ion 𝑗 for the kth Monte Carlo. However, the lowest 

possible migration energy can be very small compared to 𝑘B𝑇. In this case, no normalization is 

performed although the corresponding configuration might be unlikely and the associated jump may 

never occur.  

An alternative option is the ‘dynamic normalization’ to the lowest migration energy that occurs in the 

simulation. Before the dynamic normalization, the lattice is (partially) equilibrated using a certain 

number of Monte Carlo steps. This removes improbable jump environments, which occur in the initial 

lattice due to the random distribution of dopants and vacancies. Subsequently, the migration energies 

of a defined number of jumps attempts are recorded. The dynamic normalization can now be 

performed using the lowest occurring or one of the lowest occurring energies. The dynamic 

normalization allows a more sophisticated acceleration of KMC simulations, while a minor physical 

error is introduced as all jumps with migration energies below the normalization energy now have the 

same jump probability and are always accepted. Nevertheless, with a reasonable setting of the 

normalization threshold, this error can be kept small and the simulation runtime can be reduced by 

several orders of magnitudes (cf. section IV). 

 

Implementation 

The Kinetic Monte Carlo algorithm as described above was implemented in the in-house software 

iCon.[32] Periodic boundary conditions are applied in all spatial dimensions to mimic an infinitely large 

lattice. Random numbers are generated by the MT19937 pseudo-random number generator.[33] The 

Fisher-Yates algorithm[34] is used to distribute dopants and vacancies randomly in the simulation cell. 

In every simulation step, a vacancy and an associated jump direction are chosen simultaneously to 

ensure that every jump in the lattice is selected with equal probability. Individual positions of the sub-

lattice of the mobile species can have a different number of possible jump directions 𝑁𝑝 and the 

vacancies can exchange between these positions. Therefore, the total number of possible jumps to 

neighboring positions may change during the simulation. As a result, the number of vacancies having 

a certain 𝑁𝑝 is tracked over the whole simulation. In this way, not only all possible jumps can be chosen 

with the same probability, but also the simulated time span can be adapted to the total number of 

possible jumps. The simulated time span is then given by eq. (14) and (15) instead of eq. (9), as shown 
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in appendix A. For each jump attempt, the occupations of the lattice positions in the jump environment 

are extracted and the migration energy is calculated from the defined energy model. The contribution 

of the electric field is added according to eq. (10) and the jump probability is obtained from eq. (6) 

using 𝐸mig
′ . 

During the simulation, jumps may be rejected due to occupied or unstable sites. Both cases require 

special attention to reproduce the correct physical behavior. Firstly, the destination position of the 

chosen jump of a vacancy could be already occupied by another vacancy. The transition in this ‘site 

blocking’ situation is automatically denied but counts as a jump attempt. The classification of site 

blocking jumps as regular jump attempts originates from the definition of the simulated time span, 

which is calculated as the reciprocal sum of all jump rates (cf. eq. (9)). Here, the mean jump rate must 

decrease when site blocking increases, for example, due to a higher vacancy concentration. The 

mathematical treatment presented in Appendix B shows that site blocking can be handled in a 

physically correct way either by counting it as a jump attempt or by reducing the number of jump 

directions 𝑁𝑝,𝑖 for the respective Monte Carlo step 𝑖 accordingly. Following the approach of the KMC 

rejection algorithm, the first option is implemented in iCon. The site blocking effect is also the reason 

why in iCon vacancies are randomly selected for jump attempts instead of equivalent mobile ions. 

Since the number of vacancies is typically lower than the number of mobile ions, this reduces the 

number of blocked jumps and thus the simulation runtime. 

Secondly, jumps without a migration barrier might occur without normalization, for example, due to 

strong defect interactions in asymmetrically doped jump environments.[35] If the chosen jump has no 

migration barrier, the position of the vacancy before the chosen jump is unstable. As a result, the 

previous jump of this vacancy should have instantly moved the vacancy to the new position. Therefore, 

jumps with no migration barriers are not only always accepted but also do not count as a jump attempt 

(or Monte Carlo step). Moreover, iCon prevents jumps if they are immediately reversed. If the initial 

position of the vacancy is stable, i.e. the migration energy of a chosen jump is positive, the opposite 

direction of the jump can have no migration barrier. This renders the destination position of the chosen 

jump unstable and, even if the vacancy would have enough thermal activation to reach this position, 

it would immediately return to the initial position. As the lattice would remain unchanged, the 

transition is not valid and the jump is always rejected. This case is analog to the site blocking effect and 

must be either counted as a jump attempt, as implemented in iCon, or handled by reduction of 𝑁𝑝,𝑖. 

The simulation is divided into a preliminary and the main run, which are both terminated after a certain 

number of Monte Carlo steps per particle of the mobile species is reached. In the preliminary run, the 

initially random lattice is equilibrated. In the main run, the mean displacement 〈𝑅⃗⃗〉 of all mobile ions 

and the sum of the jump attempts 𝑁att,𝑘 per number of available transitions 𝑁𝑡,𝑘 are recorded to 

calculate the ionic conductivity with eqs. (8) and (14). For an example of the mean displacement as a 

function of time, see Figure S3. 

 IV Ionic conductivity of doped ceria  
Simulation model 

We examine doped ceria (CeO2) as a suitable model system to study the influence of doping on the 

ionic conductivity. Ceria is known for its versatile applicability in solid oxide fuel cells, high-temperature 

batteries, and catalytic processes. Moreover, Gd-doped ceria has recently been investigated as 
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resistive switching material in memristive devices.[36] Doped ceria has been subject to several Monte 

Carlo studies investigating defect distribution and ionic conductivity.[4, 17, 29, 30, 37-40]  

Ceria crystallizes in the cubic fluorite structure with a lattice parameter of 5.41 Å and is comprised of 

a face-centered cubic sub-lattice of cerium ions with oxygen ions occupying the tetrahedral sites 

forming a primitive cubic sub-lattice. Doping with rare-earth oxides (RE2O3) leads to the formation of 

one vacancy in the oxygen sub-lattice per two dopant ions on cerium sites according to the following 

reaction (Kröger-Vink notation): 

RE2O3
CeO2
→   2 RECe

′ +VO
∙∙ + 3 OO

x  (16) 

 

These oxygen vacancies enable the transport of oxygen ions by a vacancy hopping mechanism, where 

the vacancy changes its place with an oxygen ion in the nearest neighbor position along one of the 

lattice vectors (Figure 1 left). Jumps to farther positions are possible but can be neglected due to the 

large migration barriers.[41]  

  

Figure 1: Left: Section of cubic Sm-doped ceria showing an asymmetrically jump environment considered in the simulations. 
Cerium ions in light green, samarium ions in pink, oxygen ions in red and oxygen vacancy in gray. Right: Energy of the system 
as a function of the migration coordinate. The migration barriers are modeled using symmetric and asymmetric contributions. 

In doped ceria, the migration energy for each jump is influenced by the interaction with neighboring 

dopant ions and oxygen vacancies. At the center of the jump between two tetrahedral sites, the oxygen 

ion crosses a migration edge formed by two cations. Calculations show that the doping of this edge 

with large dopant ions increases the migration barrier for both forward and backward jumps and, 

therefore, has a ‘blocking’ effect.[4] Additionally, oxygen vacancies experience an attractive 

interaction with the dopant ions leading to a ‘trapping’ effect, which increases the migration barrier 

for jumps away from the dopants and decreases the migration barrier for jumps towards the dopants. 

Furthermore, the repulsion between oxygen vacancies influences the migration barriers similarly but 

with opposite signs. A detailed discussion of these effects can be found in Ref. [4]. For the accurate 

simulation of the ionic conductivities, these effects are crucial and the cut-off radius for the 

interactions has to be chosen carefully, such that all important interactions are captured.  

In the KMC simulations, the migration energy for each possible jump configuration has to be known. 

However, the number of possible configurations is vast. For ceria with a single dopant type (e.g. Sm), 

each cation position can be occupied by a cerium or dopant ion and each anion position can be 

occupied by an oxygen ion or vacancy. Considering only the six nearest cation positions and ten nearest 

anion positions around the jumping oxygen ion, a total of 216 = 65,536 configurations is possible leading 

to 16,675 unique configurations due to symmetry. Clearly, the calculation of all the migration barriers 
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by DFT is not feasible and the energies have to be modeled by a limited set of parameters. In this work, 

we separate the interactions into a symmetric contribution (𝐸sym), which changes the migration 

barrier for a forward and backward jump by the same value and an asymmetric contribution (∆𝐸conf), 

which changes both barriers by the same value but with opposite sign. The total barrier is then 

calculated as  

𝐸mig = 𝐸sym + 0.5 ∆𝐸conf, (17) 

 

where ∆𝐸conf is the energy difference between the initial and final state. An example of an energy 

profile is shown on the right side of Figure 1. The contribution ∆𝐸conf is approximated from pair 

interactions between the migrating oxygen vacancy and the surrounding defects and is, therefore, an 

‘additive’ contribution in the program. In contrast, 𝐸sym is a ‘permuted’ contribution. This approach 

significantly reduces the number of DFT calculations as the large number of possible permutations is 

reduced to a limited set of pair interaction parameters 𝜀𝑖,𝑗, which describe the interactions of the 

oxygen vacancy with the defect species 𝑗 in a shell 𝑖 around the initial or final position of the oxygen 

vacancy. During the simulation, only the numbers of these interactions in the initial (𝑁𝑖,𝑗
initial) and the 

final state (𝑁𝑖,𝑗
final) have to be determined, resulting in the contribution:  

∆𝐸conf = ∑ 𝑁𝑖,𝑗
final𝜀𝑖,𝑗

shell 𝑖
species 𝑗

− ∑ 𝑁𝑖,𝑗
initial𝜀𝑖,𝑗

shell 𝑖
species 𝑗

 (18) 

 

 

 

 

Figure 2: Left: Cation shells around the migrating oxygen ion. Right: Distance of RE-V (green) and V-V (red) interactions from 
the initial position of the oxygen vacancy and the center of the jump. Numbers indicate the neighboring shell (1st, 2nd

, etc.) in 
the respective sub-lattice before and after the jump.  

The simplest model that includes the effect of vacancy dopant interactions has to include dopant ions 

at the migration edge. This contribution is symmetric as it shifts the barriers for a forward and 

backward jump in the same direction. For Sm-doped ceria, the corresponding energies for the Ce-Ce, 

Ce-Sm, and Sm-Sm edges are 0.52 eV, 0.69 eV, and 1.09 eV, respectively.[31] Since the energy does 

not change linearly with the number of dopants, this contribution is permuted explicitly. Further cation 

sites around the jump are depicted on the left-hand side of Figure 2. On the right-hand side of Figure 
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2, the distance of the different cation and anion shells to the oxygen vacancy at the start or center 

position are shown, which are considered in this work. Identifiers in the form A-B,C refer to the defect 

distance before the jump (A) and possible defect distances after the jump (B,C).  For the simulations 

interaction energies calculated by means of DFT are taken from Ref. [4] and are given in Table 1 and 

Figure 3.  

 

 

Figure 3: Association energies as a function of the interaction radius. Note that the V-V repulsion does not monotonously 
decrease with the distance between the two oxygen vacancies. As a result, a V-V association can be observed depending on 

the interaction radius. 

 

Table 1: Pair interaction energies and edge energies applied in the simulations according to Koettgen et al.[4] For 
interaction 3NN II a cerium cation is located between the vacancies, while for 3NN I there is no cation. An attempt 

frequency of  𝟏. 𝟒𝟕 ∙ 𝟏𝟎𝟏𝟐 Hz was chosen according to Koettgen et al.[31] 

Pair interactions 

defect pair distance (Å) energy (eV) 

VV 1NN 2.7055 0.848 

VV 2NN 3.8262 0.291 

VV 3NN I 4.6861 0.306 

VV 3NN II 4.6861 0.358 

VV 4NN 5.4110 0.268 

SmV 1NN 2.3430 -0.154 

SmV 2NN 4.4866 -0.080 

Edge energies 

Edge cations energy (eV)  

Ce-Ce 0.466  

Ce-Sm 0.631  

Sm-Sm 1.031  
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Simulation results 

Ionic conductivities of Sm-doped ceria (Ce1-xSmxO2-x/2) were simulated for dopant fractions 𝑥 between 

10-4 and 0.3 at a temperature of 773 K. Simulations were performed in a cell of 16×16×16 unit cells 

with randomly distributed dopant ions, and an electrical field was applied corresponding to an energy 

contribution of 0.1 𝑘B𝑇. For each simulation, 100 MCS per oxygen ion were performed and 10 

independent simulations were averaged for each data point. The attempt frequency was set to 

𝜐0 = 1.47·1012 Hz according to previous DFT calculations.[31] Different models with interaction radii 

between 0.0 Å and 5.41 Å were considered to investigate the influence of the interactions on the ionic 

conductivity.  

The results are shown in Figure 4. For an interaction radius of 0.0 Å, no interactions are considered at 

all and the migration energy is set to the value of the Ce-Ce edge. The conductivity increases with 

increasing dopant levels due to a higher vacancy concentration. The slight deviation from a linear 

increase of conductivity is due to the site-blocking effect since an oxygen vacancy cannot jump onto 

an already vacant site. 

For an increasing interaction radius around the start, transition state and final positions of the 

migrating oxygen vacancy (see Figure 1), interactions of the migrating oxygen vacancy with dopants 

(RE-V) and vacancies (V-V) are subsequently considered. At an interaction radius of 1.91 Å, the energies 

for the three different configurations of the cation edge are included. Due to the blocking effect of the 

doped edges, the conductivity is decreased and the conductivity curve as a function of the dopant 

fraction shows a distinct maximum in the simulated concentration range.    

Increasing the interaction radius to 2.34 Å introduces the interactions with dopant ions around the 

initial and final position of the migrating oxygen vacancy. The energy for the jump of the oxygen 

vacancy is lowered for jumps towards the dopant (association) and increased for the jump away from 

it (dissociation). This trapping effect leads to a further decrease of the conductivity and a shift of the 

maximum to smaller values of 𝑥. The introduction of the vacancy-vacancy repulsion at 2.71 Å, further 

decreases the conductivity and shifts the maximum.  

Increasing the interaction radius to 3.83 Å introduces a V-V repulsion, which is actually a V-V 

association, between next nearest neighborhood positions. As the V-V repulsion energy does not 

monotonously decrease with increasing V-V distance, an association of vacancies takes place. The 

conductivity decreases significantly. Increasing the interaction radius to 4.48 Å introduces a RE-V 

interaction between the next nearest neighborhood positions and increases the trapping effect. 

Similar to other association effects, the conductivity decreases significantly. 

In summary, all interactions can decrease the conductivity: Increased symmetric migration barriers 

(blocking), RE-V association (trapping), V-V association, and even V-V repulsion. The influence on the 

conductivity increases with increasing dopant fraction. 

However, this is not always the case: Increasing the interaction radius to 4.69 Å increases the 

conductivity. Here, any V-V interaction becomes repulsive and increases in energy. Obviously, V-V 

repulsion can also increase the conductivity. Increasing the interaction radius to 5.41 Å increases the 
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V-V repulsion again significantly. However, the influence on the conductivity up to 𝑥 = 0.15 is 

marginal. Here, the conductivity slightly increases. For larger dopant fractions the conductivity strongly 

decreases. While for small vacancy concentrations the V-V repulsion leads to an ordering of the 

vacancies that increases the conductivity, starting at intermediate vacancy concentrations the number 

of vacancies is too large leading to a decrease in conductivity. 

Additionally, Figure 4 shows the models without vacancy-vacancy interaction or dopant-vacancy 

interaction. Without the dopant-vacancy interaction, the conductivity increases due to the missing 

trapping effect. In contrast, without any vacancy-vacancy repulsion, the conductivity slightly 

decreases. In this case, a strong trapping of several oxygen vacancies by a single dopant ion takes place 

since no repulsion between vacancies is included. 

 

Figure 4: Simulated conductivities as a function of the dopant fraction in Sm-doped ceria at 773 K for different interaction 
radii. 

From the simulations, it is apparent that all considered interactions have a significant influence on both 

the magnitude of the conductivity and the position of the maximum, and, thus, the interaction radius 

has to be chosen carefully to capture all important effects. Moreover, we show how the accuracy of 

Kinetic Monte Carlo simulations is improved with a large interaction radius at minimal computational 

expenses in comparison to previous models of doped ceria.[4] A detailed comparison to experimental 

data is discussed in detail in our previous publications.[4, 42, 43] Figure 5 shows the simulated and 

experimental bulk ionic conductivities at 267 °C of Sm, and for the first time, Lu doped ceria as a 

function of the doping fraction from our work. The simulated ionic conductivity of Ce0.9999Sc0.0001O1.99995 

is shown for comparison since experimental samples always contain a small concentration of 

impurities. KMC simulation and experiments are in agreement. 
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Figure 5: Simulated and experimental bulk ionic conductivities at 267 °C of Lu and Sm doped ceria as a function of doping 
fraction. Additionally, the simulated ionic conductivity of Ce0.9999Sc0.0001O1.99995 is shown. Lines are a guide to the eye only. 

 

 

From the simulations, the jump statistics can be extracted. Figure 6 shows the number of jump 

attempts (top) and successful jumps (bottom) in Ce0.9Sm0.1O1.95 depending on the migration energy. 

While a large variety of jump attempts is visible, the successful jumps are dominated by jumps through 

the Ce-Ce edge without a change in the defect environment and, in addition, jumps with a change only 

in the cation environment. The main peaks in the diagram for the successful jumps are symmetric due 

to the detailed balance that is fulfilled in the simulations. In the thermodynamic equilibrium, the 

number of successful jumps into a configuration have to be identical to the number of successful jumps 

out of a configuration in order to keep the number of oxygen vacancies in every configuration constant. 
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Figure 6: Number of jump attempts 𝑵𝐚𝐭𝐭 (top) and successful jumps  (bottom) with a certain migration energy at 773 K in 
Ce0.9Sm0.1O1.95. Annotations identify changes in the cation environment during each jump. For example, Sm1→2 identifies a 
jump where the oxygen vacancies are in the nearest neighbourhood to a Sm dopant before the jump and in the next nearest 
neighbourhood to a Sm dopant after the jump. 

 

Depending on the model and dopant fraction, the runtime of the simulations in Figure 4 ranged from 

minutes to a day per 100 MCS per oxygen ion or up to 30 ms per Monte Carlo step. 

The run time can be drastically reduced by applying the dynamic normalization scheme as described 

above. Figure 7 shows the influence of the dynamic normalization on the simulated ionic conductivity 

and the computation time in the case of Ce0.91Sm0.09O1.955 at 773 K.  In a first step, the probability and 

energy of all occurring jump configurations are recorded over 5·109 jump attempts. The configurations 

are ordered in ascending order of migration energies and the probabilities are cumulated. The 

normalization energy is chosen such that a given percentage of the jumps is always accepted. As shown 

in Figure 7, the computation time can be decreased by a factor of about 100 without changing the 

obtained value of the conductivity. The ionic conductivity is not influenced within its error if a 

cumulative percentage of jump attempts up to 0.01 % is accepted. 
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Figure 7: Ionic conductivity and computation time for different settings of the dynamic normalization performed for 
Ce0.91Sm0.09O1.955 at 773 K with the full model as stated in the text.  

 

Further dopants 

Ionic conductivities for further dopants were simulated and discussed in an earlier work for more than 

250 materials.[4] The results for 773 K, shown in the contour plot in Figure 8, clearly demonstrate that 

the maximum of the ionic conductivity depends on the ionic radius of the dopant and the dopant 

fraction. The highest conductivity is obtained for Sm-doped ceria with a dopant fraction of about 0.1. 

The absolute value of the RE-V association energy difference between nearest neighbor and next-

nearest neighbor position is negligible for Nd doped ceria and increases for larger and smaller dopants. 

The absolute value of the RE-V association energy difference between the next nearest neighbor and 

third nearest neighbor position increases for larger dopants. As a result, Sm dopants have a low 

tendency to both catch and hold oxygen vacancies (catch-and-hold principle).[4] The weak two-step 

trapping process leads to the high conductivity of Sm-doped ceria. For increasing dopant radius, the 

dopant fraction with the maximum conductivity decreases. The reason for the shift in the dopant 

fraction leading to the maximum in conductivity is the increasing blocking effect for larger dopants 

caused by an increase in the Ce-RE migration edge energy. 
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Figure 8: Interpolated simulated ionic conductivity of ceria with different dopants at 773 K depending on the ionic radius of 
the dopant and the dopant fraction. 

 

 

V Conclusions 
 

We present simulations of the oxygen ion conductivity in solid oxides based on the lattice Kinetic 

Monte Carlo (KMC) method using the software iCon. We discuss the algorithm and applicability for 

simulation of ionic conductivity with doped cerium oxide serving as a model system where the ionic 

conductivity depends on the dopant type and level of doping. The simulation results clearly show the 

influence of the blocking effect of dopant ions on the migration edge as well as the trapping due to the 

interaction of the moving oxygen vacancies with dopant ions or other oxygen vacancies. The interplay 

between these effects and the changing number of oxygen vacancies explains the conductivity 

maximum that is found in doped ceria. The simulated results are in agreement with experiments. We 

demonstrate how Kinetic Monte Carlo simulations can be accelerated to be 100 times faster with 

preserved high accuracy by applying the dynamic normalization. Moreover, we report how the 

accuracy of Kinetic Monte Carlo simulations is improved with a large interaction radius and minimal 

computational expenses. The potential to simulate systems with several thousand to millions of ions 

over a time span in the range of microseconds for a variety of materials to investigate the influence of 

composition and temperature on the ionic transport allows to select the most promising experiments 

and can accelerate the discovery of new and improved materials. 
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Appendix A: 

A Kinetic Monte Carlo simulation is a stochastic process, where the states advance by discrete 

transitions. In the rejection-based algorithm, a possible transition is randomly chosen and then either 

accepted or rejected with its transition probability. These transitions are regarded as rare events in a 

Poisson process and thus the time ∆𝑡𝑘 for the next Monte Carlo step 𝑘 to occur is exponentially 

distributed. The expected value 〈∆𝑡𝑘〉 is then given by the reciprocal total rate:[23] 

〈∆𝑡𝑖〉 = (∑𝜈0 exp (−
𝐸mig,𝑘𝑗

𝑘B𝑇
)

𝑁𝑡,𝑘

𝑗=1

)

−1

, (19) 
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where 𝑁𝑡,𝑘 is the total number of possible transitions and 𝐸mig,𝑘𝑗 is the migration energy of transition 

𝑗 for the Monte Carlo step 𝑘. The probability 𝑝𝑘 for an accepted transition in the rejection-based 

algorithm is:[22] 

𝑝𝑖 =
1

𝑁𝑡,𝑘
∑exp(−

𝐸mig,𝑘𝑗

𝑘B𝑇
)

𝑁𝑡,𝑘

𝑗=1

 (20) 

 

For each Monte Carlo step, the rejection-based algorithm is a Bernoulli process with success 

probability 𝑝𝑘, since the migration energies do not change until the next Monte Carlo step occurs. The 

number of required attempts 𝑁att,𝑘 is then geometrically distributed with the expected value 〈𝑁att,𝑘〉 =

𝑝𝑘
−1. From eqs. (19) and (20) then follows for the simulated time span: 

𝑡 = ∑〈∆𝑡𝑘〉

𝑁MCS

𝑖=𝑘

= ∑(𝜈0 ∙ 𝑁𝑡,𝑘 ∙ 𝑝𝑘)
−1

𝑁MCS

𝑘=1

= ∑
〈𝑁att,𝑘〉

𝜈0 ∙ 𝑁𝑡,𝑘

𝑁MCS

𝑘=1

 (21) 

 

For constant 𝑁𝑡,𝑘 over the whole simulation, this simplifies to eq. (9). When 𝑁𝑡,𝑘 changes, then eq. (21) 

must be used, where the ratio between transition attempts and available transitions must be recorded 

separately for each Monte Carlo step. 

 

Appendix B: 

When some of the considered transitions in the rejection algorithm are temporarily or permanently 

impossible, then the number of available transitions 𝑁𝑡,𝑘 is reduced for the respective Monte Carlo 

step 𝑘. Consequently, in this case, the impossible transitions should not be chosen in the algorithm, 

which means that the number of transition attempts is reduced as well. However, intuition also tells 

us that the simulation should be unaffected if additional highly improbable or impossible transitions 

are added to the algorithm. In the following, it is shown that this is indeed the case. Instead of reducing 

𝑁𝑡,𝑘, as explained above, it is equivalent to count the impossible transitions as attempts without 

reducing 𝑁𝑡,𝑘. Since the impossible transitions do not influence how the state advances during the 

simulation, only the simulated time span is affected. 

In the case where we exclude the impossible transitions from the algorithm, the original number of 

available transitions 𝑁𝑡,𝑘 is reduced by the number of impossible transitions 𝑁𝑡,𝑘
X  in each Monte Carlo 

step 𝑖. The transition probability 𝑝𝑘 for this Monte Carlo step, which is equal to the reciprocal of the 

expected number of transition attempts 〈𝑁att,𝑘〉 required for the Monte Carlo step, is then given by: 

𝑝𝑘 = 〈𝑁att,𝑘〉
−1 =

1

𝑁𝑡,𝑘 −𝑁𝑡,𝑘
X
∑exp(−

𝐸mig,𝑘𝑗

𝑘𝐵𝑇
)

𝑁𝑡,𝑘

𝑗=1

 (22) 

 

Since the time span Δ𝑡𝑘 for the Monte Carlo step is calculated as the reciprocal total rate, it is given 

by: 
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∆𝑡𝑘 = (𝜈0∑exp(−
𝐸mig,𝑘𝑗

𝑘𝐵𝑇
)

𝑁𝑡,𝑘

𝑗=1

)

−1

=
〈𝑁att,𝑘〉

𝜈0(𝑁𝑡,𝑘 − 𝑁𝑡,𝑘
X )
 , (23) 

 

which is equivalent to eq. (9) but with a reduced number of transitions. When the impossible 

transitions are counted as attempts, then the transition probability is equal to the reciprocal sum of 

rejected transition attempts and impossible transition attempts, the latter being calculated from the 

rejected attempts and the ratio between impossible and possible transitions: 

𝑝𝑘 =
1

𝑁𝑡,𝑘
∑exp(−

𝐸mig,𝑘𝑗

𝑘𝐵𝑇
)

𝑁𝑡,𝑘

𝑗=1

= (〈𝑁att,𝑘〉 + 〈𝑁att.𝑘〉
𝑁𝑡,𝑘
X

𝑁𝑡,𝑘 −𝑁𝑡,𝑘
X )

−1

 (24) 

 

Calculating the time span from the total rate then yields: 

Δ𝑡𝑘 = (𝜈0∑exp(−
𝐸mig,𝑘𝑗

𝑘𝐵𝑇
)

𝑁𝑡,𝑘

𝑗=1

)

−1

=

〈𝑁att,𝑘〉 (1 +
𝑁𝑡,𝑘
X

𝑁𝑡,𝑘 −𝑁𝑡,𝑘
X )

𝜈0 ∙ 𝑁𝑡,𝑘
 , (25) 

 

which again is equivalent to eq. (9), but this time with an increased number of attempts. The eqs. (23) 

and (25) are equal, which is proof that both presented approaches for the handling of impossible 

transitions are similar. 
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