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Abstract

Sm doped ceria has one of the highest ionic conductivities reported for a rare-earth

doped cerium oxide. The high oxygen ion conductivity can be attributed to the creation

of oxygen vacancies by doping and weak defect interactions between oxygen vacancies

and dopants. Especially, oxygen vacancies in nearest neighborhood to dopants decrease

the conductivity due to trapping and blocking. In this work, the local structure around

the Ce cations is investigated using extended X-ray absorption �ne structure. The result-
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ing coordination numbers of cerium coordinated by oxygen are only marginally larger

than in a random oxygen vacancy distribution explaining the large ionic conductivity.

Introduction

Solid solutions of ceria (CeO2) and rare-earth oxides (RE2O3) are known for their high oxygen

ion conductivity. As a result, rare-earth doped ceria can be applied in energy conversion and

storage as electrolyte in solid oxide fuel cells, electrolyzer cells and high temperature batter-

ies.1 The underlying mechanism determining the ionic conductivity in rare-earth doped ceria

has been a topic of research for half a century.2 In experiments, a correlation between ionic

conductivity and dopant radius was found.3�7 Theoretical investigations include analytical

models,8�11 semi-empirical12�15 and ab initio calculations.16�22 The high ionic conductivity

can be attributed to both the creation of oxygen vacancies V••
O by doping, as shown in Eq. 1

in Kröger-Vink notation,23 and weak defect interactions.2 The concentration of intrinsic- or

reduction-dominated vacancies is signi�cantly smaller as discussed in literature and can be

neglected in this work.24�26

RE2O3 −−→ 2 RE
′

Ce + 3 O×
O + V••

O (1)

Defect interactions include increased migration barriers for oxygen vacancy jumps around

dopants (blocking).22,27 Blocking appears at con�gurations where the two adjacent Ce cations

along the migration pathway of the oxygen (migration edge, Fig. 1) are substituted by

large rare-earth dopants.15,22,28�30 Additionally, the association between dopants and oxygen

vacancies increases migration barriers for oxygen jumps away from dopants (trapping) and

decreased migration barriers for oxygen jumps towards dopants.2,22 For Sm doped ceria,

defect interactions are small compared to other rare-earth dopants resulting in the high

oxygen ion conductivity as found in experiments31�40 and our earlier simulations.2,26,28 In our

simulations, we predicted ionic conductivity using Kinetic Monte Carlo (KMC) simulations41
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based on density functional theory (DFT) calculations, which are in excellent agreement with

experiments.2,42

For an experimental proof and a better understanding of the weak defect interactions

in Sm doped ceria, the average coordination number for the �rst shells around cerium ions,

which contain oxygen ions, can be studied. Figure 1 shows that, for both blocking and trap-

ping con�gurations, oxygen vacancies and Sm dopants appear in nearest neighborhood and,

therefore, decrease the Ce-O coordination number. Structural properties can be investigated

by X-Ray absorption spectroscopy (XAS) featuring the absorption edge or X-ray absorption

near-edge structure (XANES) and extended X-ray absorption �ne structure (EXAFS).

In literature, rare-earth doped ceria (Ce1�xRExO2�x/2) has already been studied using

XANES43 and EXAFS.44�54 Hormes et al. investigated Pr, Gd, Ho, La, and Sm doped ceria

(x = 0.2) and found in XANES measurements that the decreased conductivity in Nd and

La doped ceria can be traced back to di�erences in the geometric structure.43 For Gd doped

ceria (0 ≤ x ≤ 0.3), Ohashi et al. inferred that cerium has the 4+ valence state and that

Ce-O and Gd-O interatomic distances decrease with increasing dopant fraction due to defect

association.44 Yamazaki et al. con�rmed the valence state of cerium in Sc, Y, Nd, Sm, Gd,

and Yb doped ceria (0 ≤ x ≤ 0.3).45 They also found decreasing Ce-O, Gd-O and Y-O inter-

atomic distances with increasing dopant fraction, except for Sc where two phases are found.

Yoshida et al. used the Ce-O interatomic distances to extract coordination numbers in Y,

Figure 1: Possible migration con�gurations in samarium doped ceria. Ce-Ce migration edge
(left), the blocking Ce-Sm migration edge (middle) and a trapped oxygen vacancy in nearest
neighborhood to an Sm dopant (right). The appearance of blocking and trapping con�gura-
tions increases the Ce-O coordination number and decreases the conductivity. Cerium ions
(green), samarium ions (blue), oxygen ions (red spheres) and oxygen vacancies (red boxes).28

- Reproduced by permission of the PCCP Owner Societies
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Sm, Nd, and La doped ceria (x = 0.2), obtained high Ce-O coordination numbers compared

to a random distribution and, therefore, con�rmed the association of oxygen vacancies with

dopants.46 High uncertainties (±1) for the coordination number directly extracted from the

EXAFS oscillation for Gd, Y, and La doped ceria (0.05 ≤ x ≤ 0.3) were reported by Deguchi

et al.50 Finally, Wang et al. found no in�uence of the grain size on the local structure in Y

doped ceria (x = 0.18).51

Sm doped ceria, however, which possesses the highest ionic conductivity,2 has only been

investigated for the dopant fractions x = 0.1, 0.2, and 0.3.43,45�47 Coordination numbers

are only reported for Ce0.8Sm0.2O1.9. In this work, the coordination numbers for a detailed

concentration series of Sm doped ceria (∆x = 0.025 for Ce1−xSmxO2−x/2) are given, and the

method of calculating the coordination number is improved.

The paper is organized as follows: In section 2, details according to the experimental setup

and data processing are described. In section 3, we present our results for the coordination

number in pure and Sm doped ceria. Finally, we compare our results with experiments and

simulations in literature. In section 4, we give a short summary.

Experimental details

Polycrystalline samples were prepared by dissolving cerium (III) nitrate hexahydrate (99.9%,

Chempur), samarium nitrate hexahydrate (99.9%, Sigma-Aldrich) and citric acid (VWR

International, 2.5 equivalents) in water. During mixing for several hours at 50 ◦C the sol-gel

transformation occurred. The temperature was increased to 350 ◦C where the produced foam

was dried for three hours and subsequently calcined for four hours at 1000 ◦C. The calcined

powder was dry milled in a planetary mill, uniaxially pressed to disks (10 mm in diameter

and 2 mm thick) and sintered in air at 1400 ◦C for 24 hours with a heating and cooling rate

of 200 ◦C/hour. The composition was successfully veri�ed using X-Ray di�raction (Theta-

Theta di�ractometer, STOE, Darmstadt, Germany).55 Density measurements according to
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the Archimedes method gave high densities around 95% of the theoretical value.

X-Ray absorption measurements on ceria and Sm doped ceria were performed at the

Ce(K)edge using CeO2 as a reference. X-Rays were generated in the positron storage ring

Doris III (DESY, Hamburg, Germany), where positrons were accelerated to an energy of

4.5 GeV. Experiments were performed in HASYLAB at Beamline C using a Si (311) single

crystal couple monochromator. Intensities were measured using gas ionization chambers for

crushed samples mixed with boron nitride and, alternatively, as X-Ray �uorescence for pellets

using a Passivated Implanted Planar Silicon detector (PIPS) with 75 mm diameter.56,57

4 0 4 0 0 4 0 6 0 0 4 0 8 0 0 4 1 0 0 0 4 1 2 0 0 4 1 4 0 02 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

 µ( E )
 f i t t e d  p r e - e d g e  r e g i m e
 f i t t e d  p o s t - e d g e  r e g i m eµ(E

)

E n e r g y  ( e V )
Figure 2: Absorption coe�cient at Ce(K)-edge of 2.5% Sm doped ceria as a function of the
incident X-Ray energy.

The XAS data was processed using the program Athena58 by �tting of the pre- and post-

edge regime (Fig. 2) and normalization of the absorption coe�cient. No change in the valence

state for the cerium cations at room temperature is found in agreement with literature.44�46

Therefore, an energy alignment of the absorption edge to the reference sample CeO2 is

performed.

The local structure can be investigated by transforming the EXAFS region of the absorp-
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Figure 3: Modeling an EXAFS measurement of 2.5% Sm doped ceria. Right: Simple model
with two scattering paths in comparison with the experimental result. Left: Minor improve-
ment in an extended model using 11 paths.

tion coe�cient into a modi�ed Radial Distribution Function. For this purpose, a background

removal using a spline function according to literature59 and the transformation from the

energy into the wave vector-range according to Eq. 2 with the the in�ection point E0 and

the electron mass me are performed.

k =

√
2me (E − E0) /h̄

2 (2)

For larger energies or wave vectors, the EXAFS oscillations decay. Therefore, χ (k) is weighted

with k2 in this work. The kn-weighted EXAFS oscillations as a function of the wave vector

knχ (k) can be transformed into a pair correlation function or Modi�ed Radial Distribution

Function (RDF)1 in the direct space |χ (R) | using a Forward Fourier transform according

to Eq. 3 (Fig. 3).60,61 For this purpose, only a limited k-range similar for all samples is

selected by applying a window function W (k) between about 2�11 Å−1 depending on the

signal-to-noise ratio.

χ (R) =
1√
2π

kmax∫
kmin

kn · χ (k) ·W (k) · e2ikRdk (3)

1In contrast to a pair correlation function, |χ (R) | still possess a phase shift δi for the di�erent scattering
paths, which is corrected by �tting with the EXAFS equation.
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For pure and doped ceria, the Radial Distribution Function around a cation (Fig. 3) shows

contributions of oxygen ions (�rst peak) as well as cerium ions or rare-earth dopants (second

peak). In this work, the distribution of the oxygen vacancies is investigated. Therefore, the

occupation of the �rst coordination shell is of particular interest and can be investigated by

modeling the EXAFS oscillation.

As the structure of the pure and doped ceria (Fm3m) is well known,7,23,62 χ (k) can be

modeled using the EXAFS equation and �tted to the experimental data. The EXAFS oscil-

lation was modeled using the program Artemis58 and IFEFFIT.63 The sinusoidal oscillation

in the absorption coe�cient is damped by the limited lifetime of the excited photoelectron

that is scattered both elastically and inelastically and the thermal and statistical disorder.

The EXAFS equation calculates χ (k) as a sum of multiple scattering paths χ (k) =
∑

i χi (k)

with

χi (k) =
NiS

2
0

kR2
i

Fi (k) sin [2kRi + δi (k)] e−2σ2
i k

2

e−2Ri/λ(k) (4)

using NiS
2
0 = ampi ·N0, k =

√
2me (E − E0) /h̄

2 (5)

and Ri = R0 + ∆Ri. (6)

For the crystalline ceria structure, the distance to the scattering atom in pure ceria R0 and

the sample-independent degeneracy of path N0 are given by the structure. The e�ective

scattering amplitude Fi, the e�ective scattering phase shift δi and the mean free path λ (k)

were calculated using the ab initio program code FEFF8.64 A ceria reference sample can be

used to determine the energy shift E0 and the mean squared displacement σ2
i . Therefore,

only the amplitude ampi and the change in distance to the scattering atom ∆Ri for each

path are the �tted parameters for each sample. The local structure is given by Ni and Ri

which show the number and distance of neighboring atoms.

To model the EXAFS oscillation only a limited number of scattering paths, which con-

tribute in the investigated R-region, is selected. Figure 3 shows the Radial Distribution

Function of 2.5% Sm doped ceria with (a) two and (b) 11 �tted scattering paths. The simple
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model in (a) uses only the two scattering paths that possess amplitudes ten times bigger than

nearly all other paths in the (b) extended model. As the di�erence in the Radial Distribution

Function and the parameters of both models is small, only the two main scattering paths

are considered in this work.

Results and Discussion

The Radial Distribution Function is extracted from the EXAFS oscillation for the series

Ce1−xSmxO2−x/2 with ∆x = 0.025. For the Ce-edge in Sm doped ceria, the extracted Radial

Distribution Function before phase-shift correction is shown in Fig. 4. The Radial Distribu-

tion Function shows contributions of oxygen ions or vacancies (�rst peak) as well as cerium

ions or Sm dopants (second peak). The amplitude �uctuates for the �rst coordination shell.

For the second coordination shell, the amplitude decreases with increasing dopant fraction

and changes its shape. Similar observations were made previously.46,51,52,65 For Y, Gd and

La doped ceria, even a decrease for the amplitude of the �rst peak with increasing dopant

fraction up to x = 0.25 was found.44,45,50

Compared to pure ceria, doping with Sm leads to smaller amplitudes due to a decrease in

coordination number and an increase in structural disorder. For the �rst peak, especially a

decrease in coordination number is expected. In this work, however, only a �uctuation of the

amplitude can be observed. For the second peak, an increasing amount of Sm dopants clearly

leads to lower backscattering. The Debye-Waller factor decreases due to the disorder of the

cation sublattice caused by the cation substitution. The increasing disorder also contributes

to the broadening of the second peak.

Additionally, di�erences in interatomic distance can be observed. The maximum of the

�rst coordination peak (oxygen ions and vacancies) moves to lower R values for higher

dopant fractions. The second peak broadens and rather moves to larger R values for higher

dopant fractions. Similar observations were made up to x = 0.2 in literature, though the
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Figure 4: Radial Distribution Function at Ce(K)-edge of Ce1−xSmxO2−x/2.

position of the second peak varies.44�46,50�52,65 An exception is the result of Yamazaki et

al.45 They show in the Radial Distribution Function for the maximum of the �rst peak

an increasing R value with increasing dopant fraction, though they report decreasing Ce-O

distances.45 The reason for this deviation is the missing phase-shift correction for the shown

Radial Distribution Function. This emphasizes the importance of modeling according to the

EXAFS equation.

Decreasing Ce-O distances correlate with the expected decrease in coordination number.

In other words, oxygen ions near cations relax towards adjacent vacancies leading to decreas-

ing cation-anion distances. Especially the position of the second peak is in�uenced by the

change in lattice parameter.2,31,66 As the distances between Ce-Ce and Ce-dopant di�er, a

broadening of the second peak is observed as shown by Deguchi et al.50

In the next step, the Radial Distribution Function is modeled using the EXAFS equation.

The results are shown in Table 1. To investigate the local structure, the �rst coordination

shell around a cation was chosen. Here, oxygen ions or vacancies are present. The occupation
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Table 1: Fit results of the EXAFS data of Ce1�xSmxO2�x/2 at the Ce-edge. The ampli-
tude ampi and the distance to the scattering ion Ri is shown.

x ampi Ri (Å)
1st shell 2nd shell 1st shell 2nd shell

0 0.89(4) 0.93(5) 2.338(4) 3.859(3)
0.025 0.64(5) 0.85(6) 2.356(6) 3.870(4)
0.05 0.62(4) 0.66(5) 2.336(5) 3.862(4)
0.075 0.70(5) 0.84(6) 2.348(5) 3.865(3)
0.1 0.72(4) 0.68(5) 2.335(4) 3.859(3)
0.125 0.65(4) 0.68(5) 2.341(5) 3.863(4)
0.15 0.61(4) 0.60(5) 2.329(5) 3.860(4)
0.2 0.63(4) 0.50(5) 2.323(5) 3.853(5)
0.225 0.60(4) 0.45(5) 2.319(5) 3.853(6)
0.25 0.61(4) 0.40(5) 2.312(5) 3.848(6)

of the �rst coordination shell or the coordination number of cations shows the formation of

Ce-V or Sm-V associates in nearest neighborhood. For a random distribution of defects, the

(average) coordination number is

CN = 8− 2 · x. (7)

The oxygen vacancy concentration increases for increasing dopant fractions leading to a lower

coordination number for the �rst shell of Ce4+ ions. A random distribution will emerge at

very high temperatures. A general decrease in Ce-O coordination number with increasing

dopant fraction was already shown previously in rare-earth doped ceria.44,45,50

The coordination number can directly be extracted from the EXAFS equation from the

amplitude. For the amplitude, the coordination number is

CNi = 8 · ampi
amp (CeO2)

. (8)

The coordination number is equivalent to the number of neighboring atoms N , which

is �tted here with the amplitude. However, the amplitude depends strongly on the EXAFS

Data Processing and has a great error, which can be seen in Fig. 5. Using the amplitude in

the EXAFS equation additionally leads to a poor approximation of the Ce-O coordination
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number. Ce-O coordination numbers are signi�cantly lower than predicted by a random

cation distribution. This would mean that oxygen vacancies do not associate with rare-earth

dopants but appear near cerium ions. While this might be a reason for further investigations,

in fact, the Ce-O coordination numbers are lower than even physically possible as determined

by the oxygen vacancy concentration.
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Figure 5: Coordination number of Ce-O for Sm doped ceria. X-ray di�raction experiments
according to Nakamura [a].67 EXAFS experiments according to Eq. 9 using data from Ya-
mazaki et al. [b].45 Metropolis Monte Carlo simulations according to an earlier work.28

Alternatively, the determination of the coordination number can be improved by using

the distance to the neighboring atoms R. Shannon has shown that the ionic radius depends

on the coordination number.68 According to Shannon, the distance between cation and anion

lattice sites decreases for an increasing number of vacant anion lattice sites (or for a lower

coordination number). Therefore, a coordination number can be calculated from the distance
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to the neighboring atom (Fig. 5). For the distance, the coordination number is

CNi = 6 + 2 · ri − rCN=6

rCN=8 − rCN=6
, (9)

with the distances rCN=6 and rCN=8 given by Shannon,68 which are shifted to the Ce-O dis-

tance according to X-ray di�raction measurements in pure ceria.23 For the latter, CN = 6

is the only investigated coordination number smaller than CN = 8. In this simple model, a

mixture of the two isotropic coordination states is assumed. The error of the coordination

number based on the distances is signi�cantly smaller than for the amplitude (Fig. 5). Com-

paring both types of coordination numbers suggests that the error based on the EXAFS

�tting procedure is smaller than the actual systematic error of the data, especially for the

amplitude data.

Using the distance leads to a signi�cantly better coordination number in the range of

both random distribution and X-ray di�raction measurements by Nakamura.67 Moreover, in

this work, we signi�cantly improved the measured coordination numbers compared to results

extracted from the interatomic distances reported by Yamazaki et al.45 The slight increase in

Ce-O coordination number compared to the random distribution is caused by the association

of Sm dopants and oxygen vacancy (trapping). As the deviation to the random distribution

is marginal, the Sm-V association is weak in Sm doped ceria. This is also con�rmed by the

agreement with our earlier Metropolis Monte Carlo simulations based on density functional

theory calculations.28 While the EXAFS measurements were performed at room tempera-

ture, doped ceria is applied in applications that often have signi�cantly higher operating

temperatures. At higher temperatures, the fraction of oxygen vacancies that are trapped by

dopants is even lower due to the increase in available thermal energy.

In our earlier work, we demonstrated that the activation barriers for oxygen ion migra-

tion depend on the oxygen vacancy trapping on the one hand, and on an energy contribution

depending on the migration edge (Fig. 1, blocking) on the other. Kinetic Monte Carlo sim-
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ulations were applied to simulate the oxygen ion conductivity and the selective deactivation

of both energy contributions allowed a deeper understanding of the in�uence of the blocking

and trapping e�ect on the ionic conductivity. We demonstrated that the low trapping e�ect

in Sm doped ceria results in a high oxygen ion conductivity.2 In this work, the coordination

numbers determined by EXAFS give us a direct insight in the oxygen vacancy trapping that

directly determines the low migration barriers and the high ionic conductivity in Sm doped

ceria.

Conclusions

Coordination numbers in Sm doped ceria were determined using X-Ray absorption in agree-

ment with experiments and simulations. The accuracy of the coordination numbers from

extended X-ray absorption �ne structure (EXAFS) experiments for the Ce-edge in Sm doped

ceria was improved compared to studies considering only the amplitude of the Radial Dis-

tribution Function as well as studies reporting Ce-O interatomic distances. The association

of oxygen vacancies and Sm dopants was veri�ed. Only small defect interactions were shown

by similar coordination numbers in Sm dopant ceria and a random distribution of defects

providing a new physical insight in the microscopic origin of the high macroscopic ionic

conductivity in Sm doped ceria.
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